Study of Complications of Liver Cirrhosis with Special Reference to Hepatorenal Syndrome: A Prospective Study from Central India

Dr. Anvesh Singh Parmar¹, Dr. Jitendra Rajput²

¹Senior Resident, Department of Medicine, GR Medical College, Gwalior, India
²Ex-Resident, Department of Medicine, GR Medical College, Gwalior, India

Abstract: Despite its functional nature, hepatorenal syndrome (HRS) is associated with a poor prognosis and the only effective treatment is liver transplantation. It is very important to diagnose renal impairment in cirrhosis patients at an early stage before overt HRS develops. To study and compare demographic, clinical, biochemical parameters between different complications of liver cirrhosis with special reference to HRS. Hundred liver cirrhosis patients were studied in J.A. Group of Hospitals, Gwalior from November 2014 to September 2016. Detailed history, chief complaints, history of present and past illness, personal history, occupational history, family history, drug and addiction history was taken. General and systemic examination of patients was done. All routine investigation like renal function test, liver function test, urine R/M, USG abdomen, renal color doppler, was performed after dividing patients into Group A (patients with compensated liver cirrhosis), Group B (patients with decompensated cirrhosis responsive to diuretics), Group C (patients with decompensated cirrhosis resistant to diuretics) and Group D (patients with hepatorenal syndrome). Male preponderance (84%) was observed with mean age of 45.34±13.98 years. Most of the patients had decompensated cirrhosis (n=97). Most common cause of liver cirrhosis was alcohol (n=68). Blood urea (n=12) and serum creatinine (n=13) was higher in patients with HRS. Hepatic Encephalopathy was more common in HRS patients (n=8). Out of 11 patients with spontaneous bacterial peritonitis (SBP), 27.27% patient found to have hepatorenal syndrome. HRS is common among male patients who consume alcohol. Blood urea and serum creatinine were increased. Hepatic Encephalopathy and SBP were common fining in HRS in liver cirrhosis patients.

Keywords: liver cirrhosis, renal color doppler, decompensated liver cirrhosis, hepatorenal syndrome.

INTRODUCTION

Renal hemodynamic changes with intense intrarenal vasoconstriction begin early in the course of liver disease before changes in the level of serum urea and serum creatinine. Patients with cirrhosis and portal hypertension develop circulatory dysfunction characterized by disturbance in systemic and renal hemodynamics [1].

Hepatorenal syndrome (HRS) is a “functional” and reversible form of renal failure that occurs in patients with advanced chronic liver disease. The distinctive hallmark feature of HRS is the intense renal vasoconstriction caused by interactions between systemic and portal hemodynamics. This results in inactivation of vasoconstrictors and suppression of vasodilators in the renal circulation [2].

Most patients with hepatorenal syndrome do not have a satisfactory response to diuretic therapy [3, 4]. In present study we tried to compare different type of complications associated with liver cirrhosis by making four groups and to find out the differentiating factors with special reference to HRS.

MATERIALS AND METHODS

Present prospective cross-sectional study included 100 patients with cirrhosis of liver in J.A. Group of Hospitals, Gwalior between November 2014 to September 2016.

This study was approved by Ethical Committee and written informed consent from patients or legal guardians was obtained before starting the study.

Patients with age ≥18 years, who have reported cirrhosis of liver on abdominal ultrasonography were included. Patients not giving consent, with other co-existing illness such as chronic renal disease, with sepsis and patients with diabetes,
renal stone, hypertensive patients, nephrotoxic drug intake were excluded.

Detailed history, chief complaints, history of present and past illness, personal history, occupational history, family history, drug and addiction history was taken. General and systemic examination of patients was done. All routine investigation like - CBC, RFT, LFT, ECG, RBS, urine R/M, USG abdomen, renal color doppler was performed.

All patients of cirrhosis of liver are categorized as - Group A (patients with compensated liver cirrhosis), Group B (patients with decompensated cirrhosis responsive to diuretics), Group C (patients with decompensated cirrhosis resistant to diuretics) and Group D (patients with hepatorenal syndrome).

Child Pugh Score was used to classify cirrhosis of liver as Grade A (Total score of 5–6; well compensated disease), Grade B (Total score of 7–9; disease with significant functional compromise) and Grade C (Total score of 10–15; decompensated liver disease)

All the data was analyzed using IBM SPSS ver. 20 software. Cross tabulation and frequency distribution was used to prepare tables. Chi square test was used to obtain p value. P value <0.05 is considered as significant.

RESULTS

Mean age of study cohort was 45.34±13.98 years which ranged from 19 to 81 years. Maximum patients were in group of 36-45 years (34%). Majority were males (84%).

Data is expressed as number of patients.

Group A: patients with compensated cirrhosis, Group B: patients with decompensated cirrhosis responsive to diuretics, Group C: patients with decompensated cirrhosis resistant to diuretics, Group D: patients with hepatorenal syndrome

Out of 100 cirrhotic patients, maximum were having decompensated cirrhosis (97%). Alcohol was found to be leading cause of cirrhosis (68%) followed by hepatitis B (21%) and hepatitis C (1%).

In patients with compensated cirrhosis, no patient had hepatic encephalopathy. In patients with decompensated cirrhosis, 19.59% patients found to have hepatic encephalopathy (p>0.05).

Spontaneous bacterial peritonitis (SBP) was seen in 11% patients. Out of 11 patients with SBP, 27.27% patient found to have hepatorenal syndrome. In 89 patients without SBP, 11.23% patients developed hepatorenal syndrome (P>0.05).

Upper GI bleed was present in 6 % patients. Out of 6 patients presenting with upper GI bleed, 16.67% developed hepatic encephalopathy whereas out of 94 patients without upper GI bleed 19.15%
Hepatic encephalopathy was present in 13% patients with hepatorenal syndrome.

DISCUSSION

The hepatorenal syndrome is a well recognized complication of cirrhosis that often develops acutely in previously non-azotemic patients. The earliest stage of this apparently functional form of kidney failure often goes unrecognized because creatinine elevation is a late feature of hepatorenal syndrome. Intense intrarenal vasoconstriction is an early hallmark of this functional kidney failure, although the precise causes are poorly defined and clinical assessment of vasoconstriction is very difficult [5].

Most common age group in our study was 36-45 years of age followed by 26-35 years of age. Mean age of the patient was 45.3±13.98. In our study most of the patients were males (84%) and male to female ratio was 5:2:1 in our study. By Wang et al. [6], mean age of the patient was 50.54±10.49 years and author also reported male preponderance (74%). Similar to present study Moustafa et al. [5] reported male preponderance (67.5%).

As par age distribution among various groups, in 36-45 years of age group, maximum numbers of patients were in group B (55.88%) followed by Group C (23.53%). In 26-35 years of age group, maximum number of patients were in group C (45.83%) followed by group B (29.41%). Platt et al. in a similar study reported that most of the patients belong to age group of 30-50 years [7].

In our study, patients with decompensated cirrhosis were more (97%) as compared to compensated cirrhosis. In a similar study by Wang et al. [6] patients with compensated cirrhosis were 40% and patients with decompensated cirrhosis were 60%. Similar reports were generated by Mindikoglu et al. [8].

Alcohol was found to be a major cause of cirrhosis (68%) followed by hepatitis B (21%). In alcohol related cirrhosis group, patients with decompensated cirrhosis responsive to diuretics (51.47%) were more as compared to decompensated cirrhosis resistant to diuretics (47.06%). In hepatitis B related cirrhosis group, both decompensated cirrhosis responsive and resistant to diuretics were equal. In Colli et al. study [9], 19.82% patients were of alcoholic cirrhosis followed by viral related cirrhosis (18.96%).

Hepatic encephalopathy was present or developed in 19.59% patients. In patients with compensated cirrhosis, no patient found to have hepatic encephalopathy and in decompensated cirrhosis 19.59 % patients found to have hepatic encephalopathy. In our study maximum number of patients of hepatic encephalopathy were in Group D (42.10%) followed by Group B (31.58%). Amer et al. in similar study found that hepatic encephalopathy was present in 20.16% patients and all the patients had decompensated cirrhosis [10] Götzberger et al. reported similar findings [11].

In our study, 6% patients presented with upper GI bleed. This is in accordance with Lomas et al. [12] Wong et al. [13] reported that, 30% patients with SBP developed hepatorenal syndrome, which is in agreement with the present study where SBP was seen in 11% patients. Out of 11 patients with SBP, 27.27% patient found to have hepatorenal syndrome. In 89 patients without SBP, 11.23% patients found to hepatorenal syndrome (P>0.05).

Most of the patients in Group D had serum creatinine >1.5 and blood urea >40 compared to other three groups. Sikarwar et al. in a similar study of 60 cirrhotic patients reported that serum creatinin levels and blood urea levels were higher in hepatorenal syndrome group compared to other three groups [14] results were reported by Nix et al. [15].

CONCLUSION

HRS is common among male population, patients consuming alcohol. Blood urea and serum creatinine were increased. Hepatic Encephalopathy and SBP were common finding in HRS in liver cirrhosis patients. The intrarenal arterial Doppler is an important non-invasive tool used to study the extent of vasoconstriction in HRS.

REFERENCES

Available online: http://saspublisher.com/sjams/