Antibacterial and Antibiofilm Activities of Sugar Palm Fruit Extract against Propionibacterium acnes
Yanti1,2*, Wilson Aldridge2
1Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia
2Biology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia

INTRODUCTION
Acne vulgaris is a common skin disease that occurs in adolescents. About 80-100% of 14 to 19 years old teenagers experience this skin disorder. Acne itself is caused due to excessive oil on the skin so as to provide a good environment for the growth of microbes that cause acne, namely Propionibacterium acnes. Parts of the body that acne usually occurred are the face and the back, because in these areas, there are many oil glands. There has been much research done to solve the problem of acne, one of the most commonly used is the antibiotic therapy, but it may cause chronic side effects [1]. Fruits are an important source of bioactive compounds, such as ascorbic acid, flavonoids, phenolic compounds and pectins that may act as antimicrobial and antioxidant agents. Antioxidants can protect the skin from oxidative stress that can lead to inflammation in the form of acne [2].

Sugar palm fruits (Arenga pinnata), known as kolang kaling in Indonesia, belong to a popular tropical fruit with potential health nutrition and natural ingredient contents. Riley et al. reported that sugar palm fruits are rich in carbohydrates and fibers, but less in lipid and protein [3]. It is also high in mineral contents including calcium (Ca) and phosphor (P), and a high Ca/P ratio is known to be associated with more health benefits, including bone mineralization [4]. In terms of its pharmacological effect, sugar palm fruits contained octadecenoic acid and resorcinol that could be applied for topical acne treatment [5, 6]. Our recent study also demonstrated that galactomannan, a polysaccharide compound extracted from sugar palm fruits, exerted potent antibacterial and antimicrobial efficacy by inhibiting tyrosinase activity, blocking microphalmmia-associated transcription factor gene expression, and preventing photoaging biomarkers, such as matrix metalloproteinase 1 and 13 in cell culture systems [7]. In this study, we determined whether sugar palm fruit extract (SPFE) also possessed antibacterial and antibiofilm activities against P. acnes in vitro for management of acne vulgaris.
MATERIALS AND METHODS

Extraction and identification of sugar palm fruits

Sugar palm fruits were purchased from a traditional market in Jakarta (Indonesia). The fruits were extracted in methanol according to the modified method of Uribe et al. [8]. Fruit flesh was mashed and diluted in 80% methanol with solid/liquid ratio 1:4, followed by agititation at 200 rpm in room temperatures with orbital shaker for 30 minutes. The mixture was then filtered with Whatman paper and centrifuged 10,000 ×g for 30 minutes twice. Subsequently, the extract was concentrated with rotary evaporator in 37°C, followed by freeze drying to obtain SPFE for further identification and assays.

For identification, SPFE was run on gas chromatography mass spectrometry with pyrolysis system (py-GC/MS) using QP2010 to identify composition of chemical compounds. The SPFE (0.5 g) was injected to the capillary column (phase Rtx-5MS) with 60 m × 0.25 mmID film thickness. Pyrolysis temperature was set to 280°C. Helium was used as the carrier gas. For assays, SPFE was diluted in dimethyl sulfoxide (DMSO) at various concentrations.

Preparation and growth of Propionibacterium acnes bacteria

P. acnes (ATCC 6919) were cultured in Brain Heart Infusion (BHI) media supplemented by 2% v/v fetal bovine serum (FBS). For optimal P. acnes biofilm growth, 3% w/v sucrose was added to media that had been supplemented by FBS. P. acnes were cultured anaerobically using anaerobic gas pack in an anaerobic jar at 37°C for 48 hours.

Antibacterial assay of SPFE against P. acnes growth

Antibacterial activity of SPFE was determined by minimum inhibitory concentration (MIC) using standard microdilution method [9]. A 100 μL of P. acnes culture was added to the 96-wells plate, followed by the addition of 100 μL of sample (SPFE) in various concentrations (0.25-500 μg/mL). Kanamycin (0.25 μg/mL) was used as a reference. The untreated P. acnes culture was used as control. Plate was anaerobically incubated at 37°C for 48 hours. Absorbance was measured at 595 nm using microplate reader. Experiments were done in triplicate.

For prevention assay, the 96-well plate was coated with 150 μL artificial saliva. The plate was dried at 37°C overnight. A 20 μL P. acnes and 180 μL BHI broth were moved into the wells, and plate was incubated at 37°C for 48 hours. After the biofilm had been formed, 50 μL of SPFE sample (10-500 μg/mL) was added to each well and the plate was further incubated for 48 hours. Kanamycin (0.25 μg/mL) was used as a reference. The untreated P. acnes biofilm was used as control. After the incubation, the well was gently washed using PBS to discard the planktonic cells in the well, and the plate was dried in room temperature for an hour. The biofilm formed at the bottom of the well was dyed using a 100 μL crystal violet 0.4% w/v for 30 min. The well was destained using 200 μL ethanol 96%. A 100 μL ethanol was pipetted to a new well, and then the absorbance was measured at 595 nm using microplate reader. Experiments were done in triplicate.

STATISTICAL ANALYSIS

Data were expressed by computational analysis (SPSS 12.0), and the significance of the differences was assessed via a t-test. A value of p < 0.05 was taken as statistically significant.

RESULTS

Identification of chemical compounds in SPFE

The py-GC/MS chromatogram (Figure 1 and Table 1) showed that SPFE had 8 compounds with major pyran group including levoglucosan (78.90%) and methyl-β-D-glucoside (7.20%). Other major compound was detected as calditocaldarcheol (7.50%) that was grouped in oxonium salt.
Fig-1: Chromatogram of chemical compounds in SPFE by py-GC/MS. Major compounds in SPFE were calditocaldarcheol (1), levoglucosan (2) and methyl-β-D-glucoside (3)

Table-1: Chemical compounds of SPFE

<table>
<thead>
<tr>
<th>Retention time</th>
<th>Constituents</th>
<th>Group</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.576</td>
<td>Cyclopropane</td>
<td>Alkane</td>
<td>1.35</td>
</tr>
<tr>
<td>16.044</td>
<td>Quinitol</td>
<td>Diol</td>
<td>1.33</td>
</tr>
<tr>
<td>16.878</td>
<td>Calditocaldarcheol</td>
<td>Oxonium salt</td>
<td>7.50</td>
</tr>
<tr>
<td>17.707</td>
<td>Levoglucosan</td>
<td>Pyran</td>
<td>78.90</td>
</tr>
<tr>
<td>17.996</td>
<td>Methyl-β-D-glucoside</td>
<td>Pyran</td>
<td>7.20</td>
</tr>
<tr>
<td>18.895</td>
<td>β-D-glucofuranose</td>
<td>Furan</td>
<td>2.60</td>
</tr>
<tr>
<td>20.292</td>
<td>Hexadecenoic acid</td>
<td>Fatty acid</td>
<td>0.82</td>
</tr>
<tr>
<td>21.511</td>
<td>Octadecenoic acid</td>
<td>Fatty acid</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Antibacterial activity of SPFE

To determine the effect of SPFE on the inhibition of P. acnes growth, various concentrations of SPFE (0.25-500 µg/mL) were tested against P. acnes culture in BHI broth. Our results demonstrated that SPFE exerted antimicrobial activity against P. Acnes with MIC value of >500 µg/mL. At 16 µg/mL, SPFE effectively inhibited ~50% of P. acnes growth (Figure 2). Meanwhile, kanamycin reference (0.25 µg/mL) inhibited up to 80% of P. acnes growth.

Fig-2: Antibacterial activity of SPFE against P. acnes growth in vitro. Kn (kanamycin) was used as a reference (0.25 µg/mL). Data were shown as mean ± SD from triplicate experiments. p<0.05 against control (untreated P. acnes)

Antibiofilm activity of SPFE

For antibiofilm effect, SPFE was more effective for eradication effect on existed P. acnes biofilm compared to that of preventive effect (Figure 3). At 100 µg/mL, SPFE killed up to ~40% of the existed P. acnes biofilm, and the increased concentration of SPFE (500 µg/mL) also significantly removed up to 80 of the existed P. Acnes biofilm. In the prevention system, SPFE up to up to 500 µg/mL only prevented ~30% of P. acnes biofilm formation. Kanamycin reference at 0.25 µg/mL showed slight antibiofilm activity with a 30-40% inhibition on
both the existed *P. acnes* biofilm and *P. acnes* biofilm formation.

(A)

![Bar graph showing eradication of existed P. acnes biofilm](image1)

(B)

![Bar graph showing inhibition of P. acnes biofilm formation](image2)

Fig-3: Antibiofilm activity of SPFE with eradication effect on the existed *P. acnes* biofilm (A) and preventive effect on *P. acnes* biofilm formation (B) *in vitro*. Kn (kanamycin) was used as a reference (0.25 µg/mL). Data were shown as mean ± SD from triplicate experiments. p<0.05 against control (untreated *P. acnes*).

DISCUSSION

Acne vulgaris has been a skin problem for most people particularly the teenagers due to the feeling of insecure of their appearance. Diet on sugar palm fruit is potential to apply for acne vulgaris treatment, because it has active compounds such as polyphenols that exert anti-inflammation and antioxidant activities [6]. Sugar palm fruit also improves our health due to its high carbohydrate content including fiber and low in protein and lipid contents [3].

In this study, our results demonstrated that identification of chemical compounds in SPFE by py-GC/MS revealed that SPFE was rich in pyran group including levoglucosan and methyl-β-D-glucoside (Figure 1 and Table 1). In line with our study, Sahari *et al.* also reported that major compounds in sugar palm fruit were β-1,6-anhydro-D-glucopyranoside (levoglucosan) and 2-furaldehyde (furfural) [10].

For antibacterial activity, SPFE did not exert potential MIC value (>500 µg/mL), but at 16 µg/mL, SPFE inhibited >50% of *P. acnes* growth (Figure 2). These data indicate that SPFE may effectively posses antibacterial activity against *P. acnes*. Kanamycin was used as a reference due to its widespectrum antibiotic property against gram-positive bacteria. The MIC of kanamycin was ranged from 64-128 µg/mL [11]. Other studies also reported that sargafuran isolated from marine brown alga (*Sargassum macrocarpum*) and Indian sarsaparilla fruit extract (*Hemidesmus indicus*) exerted antibacterial activity against *P. acnes* with MIC values of 15 µg/mL and 51 µg/mL [12, 13].
In terms of antibiofilm efficacy, SPFE was found to be more effective for eradication effect (up to 80%) against the existed P. acnes biofilm compared to that of preventive effect. Unfortunately, kanamycin reference only showed less antibiofilm activity in both eradication and prevention effects against P. acnes biofilms. Dror et al. reported that various mechanisms of several antibiofilm agents may affect the different mechanisms of these agents on eradicating and preventing biofilms [14]. Our results indicate that antibiofilm activity of SPFE on biofilm eradication may correlate to its ability on degradation of exopolysaccharides matrix polymer components in biofilm and/or interfering with signaling molecules inside the biofilm [15, 16]. In addition, SPFE may not have the ability to interfere with the adhesion of biofilm to solid surfaces or to inhibit the bacteria quorum sensing, thus, biofilm formation could not be prevented [17].

CONCLUSION
Our results demonstrated that major compounds in SPFE were levoglucosan and methyl-β-D-glucoside as pyran group. SPFE exerted antibacterial effect against P. acnes growth and antibiofilm activity via eradicating the existed P. acnes biofilms. SPFE may have potential to be further developed as a promising material for combating acne vulgaris.

ACKNOWLEDGEMENT
This study was financially supported by the 2015 Faculty Grant from Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta (Indonesia).

REFERENCES