Abtract: Dyslipidemia is one of the major modifiable risk factor. Low density lipoprotein cholesterol (LDL-C) acts as the primary lipid agent for CAD risk prediction and therapeutic target, emphasizing the importance of accuracy and precision of LDL-C estimation. The aim of this study is to compare the results obtained by direct homogenous assay for LDL-C to those obtained by Friedewald’s formula and Anandraja’s formula in north Indian population catered to our Hospital and their correlation. Lipid profile reports of 500 patients above 18 years (TG<400mg/dl) were analysed. LDL-C estimation was done by homogenous assay and also calculated using the Friedewald’s Formula and Anandaraja’s Formula along with their correlation studies. According to Friedwald formula and Anandraja’s formula 9.8% and 6.4% patients were classified under low risk category respectively but showed a significant positive correlation of 0.95 and 0.91 between direct LDL and FLDL and AFLDL. Calculated LDL-C results obtained by Friedewald’s and Anandaraja’s formulas show very good correlation with the measured LDL-C but underestimate risk of heart disease when compared to direct LDL cholesterol. LDL-C is considered as the primary basis for diagnosis, treatment and risk classification of patients with hyperlipidemia and it is imperative to validate all these formulas normal healthy and diseased in large populations for a definitive concluding remark.

Keywords: Friedewald’s Formula, Anandaraja’s Formula, Low density lipoprotein cholesterol
Because VLDL (very low-density lipoprotein) carries most of the circulating triglycerides (TG), VLDL-C can be estimated reasonably well from the measured TG divided by 5 for mg/dl units. LDL-C is then calculated as total cholesterol (TC) minus high density lipoprotein cholesterol (HDLC) minus estimated VLDL-C [9].

Although this estimation formula correlates highly with beta quantification, it has certain limitations: it is not valid for samples with chylomicrons, with TG>400 mg/dl or in patients with dysbetalipoproteinemia. This formula assumes the ratio of total TG to VLDL-C to be constant in all samples. The formula will overestimate VLDL-C and underestimate LDL-C as a consequence if TG rich chylomicrons and chylomicron remnants are present in the serum sample (hence the requirement for a fasting sample) [10].

The use of this formula is not recommended for type 2 diabetes, nephrotic syndrome and chronic alcoholic patients because accompanying abnormalities in lipoprotein composition render the underlying assumptions invalid for assessment of cardiovascular risk in these patients and thus leading to erroneous results even when TG levels are between 200 and 400 mg/dl [11]. The NCEP working group on lipoprotein measurements has recommended that the LDL-C concentration be determined with a total analytical error not exceeding ±12% (±4% imprecision and ±4% inaccuracy) to guarantee correct patient classification into NCEP risk categories [12]. It is difficult to obtain this analytical quality with Friedewald’s formula (FF) because each component’s analytical error is added [7].

Homogenous assays, developed in 1998 in an effort to overcome the limitations existing with both beta quantification and the Friedewald formula, represent the third generation of LDL-C measurements [13]. These homogenous direct methods use various physicochemical combinations of surfactants, polymeric complexes, and specific binding molecules to selectively measure cholesterol from LDL fraction [14]. But these methods are not routinely used in most of the Indian laboratories as they are expensive which increase the cost of lipid profile estimation. Moreover, many studies done to compare the direct methods with FF have shown to give the results comparable to the Friedewald calculation [15-17].

Many modifications of FF have also been reported, claiming better accuracy and precision than FF [18, 19].

To overcome these limitations, several modifications in this formula have been suggested. Anandaraja et al., [19] formula LDLC = 0.9TC -0.9 TG/5 -28. In this formula only TC and TG were used. However, they have not included serum having TG > 350mg/dl. The new formula appeared to be more accurate than Friedewald’s formula in Indian population. However, Shalini et al., [20] reported that Friedewald’s (FF) formula was better in agreement with measured LDLC(Direct homogeneous method) than Anandaraja’s formula in Indian subjects. Interestingly, this new formula was found to be working well in Brazilian [21] and Greek population [22].

This study was aimed to compare two different calculated methods (FF and Anandaraja formula) with direct homogeneous assay to assess their validity, suggest most precise, accurate and suitable method for LDL-C estimation in clinical labs and to assess whether different methods affect the classification of patients for CAD risk.

In spite of the technical disadvantages of FF, it is difficult to displace it from clinical practice unless a method with clear advantages in performance and overall cost effectiveness is developed. The aim of this study is to compare the results obtained by direct homogenous assay for LDL-C to those obtained by Friedewald’s formula and Anandaraja’s formula in north Indian population catered to our Hospital.

MATERIALS AND METHODS

This was a comparative study for the estimation of LDL-C using two different formulas and direct estimation by a homogenous assay. Data was collected for the lipid profile samples received in the lab of a tertiary care hospital VMMC and SJH and included patients of at least 18 years of age. Lipid profiles with TG >400 mg/dl were also excluded. The serum samples were obtained by withdrawing 3 ml of venous blood after 10–12 h of overnight fasting and collected in plain vials. The serum was separated by centrifugation and analyzed on ADVIA 2400 autoanalyser.

Serum total cholesterol (TC) was measured by enzymatic endpoint method with a coefficient of variation (CV) of 3.1%. Serum triglyceride (TG) was measured by enzymatic method with a CV of 3.6%. Serum high density lipoprotein cholesterol (HDLC) was measured by direct homogeneous assay with a CV of 5.6%. Serum low density lipoprotein cholesterol (LDLC) was measured by direct homogeneous assay with a CV of 4.9%. All biochemical lipid analysis was done on ADVIA 2400 chemistry auto analyzer by using ADVIA Chemistry, Siemens Kits. LDL-C levels were also calculated by Friedewald’s formula (FF); LDL-C = TC - (HDLC +TG/5). TC, TG, LDLC, HDLC were measured enzymatically by enzymatic methods using reagent kits obtained from SIEMENS.

The Triglycerides (TRIG) estimation method was based on the Fossati three-step enzymatic reaction with a Trinder endpoint. The triglycerides are converted to glycerol and free fatty acids by lipase. The glycerol is
then converted to glycerol-3-phosphate by glycerol
kinase followed by its conversion by glycerol-3-
phosphate-oxidase to hydrogen peroxide. A colored
complex is formed from hydrogen peroxide, 4-
aminoazophenazon and 4-chlorophenol under the catalytic
influence of peroxidase. The absorbance of the complex
is measured as an endpoint reaction at 505/694 nm.

The Cholesterol_2 (CHOL_2) method is based
on an enzymatic method using cholesterol esterase
and cholesterol oxidase conversion followed by a Trinder
endpoint. The cholesterol esters are hydrolyzed by
cholesterol esterase to cholesterol and free fatty acids.
The cholesterol is converted to cholest-4-en-3-one by
cholesterol oxidase in the presence of oxygen to form
hydrogen peroxide. A colored complex is formed from
hydrogen peroxide, 4-aminoazopyrine and phenol
under the catalytic influence of peroxidase. The
absorbance of the complex is measured as an endpoint
reaction at 505/694 nm.

The LDL Cholesterol Direct (DLDL) method
measures LDL cholesterol in serum and plasma. The
first step of the reaction eliminates cholesterol
associated with lipoproteins other than low-density lipoprotein. A selective surfactant releases cholesterol
preferentially from non-LDL particles. Hydrogen
peroxide produced by cholesterol esterase and
cholesterol oxidase in the first step is eliminated by
catalase. Another surfactant releases cholesterol from
the low-density lipoprotein. Azide inhibits the catalase.
Hydrogen peroxide generated by cholesterol esterase
and cholesterol oxidase is quantified using a Trinder
endpoint.

The Direct-HDL Cholesterol (D-HDL) method
measures HDL cholesterol in serum and plasma without
prior separation, based on procedures developed by
Izawa, Okada, and Matsui.1 Cholesterol from non-HDL
particles is released and eliminated in the first step of
the reaction. Cholesterol in HDL particles is released in
the second step by detergent and the HDL cholesterol
measured by a Trinder reaction.

TG and TC was calibrated using general
chemistry calibrator provided by SIEMENS. Lypocheck
assayed chemistry control (LOT: 26401) Level 1 and
LOT: 26402) 2 control sera (BIORAD) were used as
quality control for these parameters. HDL/LDL
lyophilized cholesterol calibrator (LOT: 324635,
ADVIA Chemistry) and TG (chemistry calibrator,
LOT: 680725A, ADVIA Chemistry) was used for the
calibration of HDL-C and LDL-C and TG.

Statistical Analysis

The results were expressed as mean ± SD. The comparisons between groups were done using t test
using Graph pad prism v6. Student t test and Pearson’s
correlation was used for comparing the differences in
LDL-C concentrations. The level of significance was
taken as p < 0.05. Bland–Altman graphical plots were
used in order to measure or analyse the degree of
agreement between the direct LDL-C assay method and
formulae for LDL-C calculation.

RESULTS

A total of 500 lipid profiles were assessed. 342
(68.4%) samples were received from the male patients
and 158 (31.6%) were from females. The mean age of
the patients was 48.8 ± 14.2 years in males and
42.1±4.6 in females. (Table1)

Mean TG was 145.7±87.6 mg/dl and
maximum no of patients 282(56.4%) had TG level less
than 200mg/dl (Table 1, 2). Mean Cholesterol level was
175± 40.04 mg/dl with 271(54.2%) patients had
cholesterol level greater then 200mg/dl (Table1, 3).
Mean HDL cholesterol level was 53.5 ±12.39 mg/dl and
283(56.6%) patients had HDL level less than 50mg/dl
(Table 1,4). Mean LDL cholesterol obtained by direct
homogenous assay level was 108.4 ±34.2 mg/dl, by
Friedwald formula was 95.8 ± 32.5mg/dl, Anandraja’s
formula 97.4±32.73mg/dl respectively (Table 1). Both
of the formulas underestimated the LDL cholesterol
level compared to direct homogenous assay. Friedwald
formula underestimated the level of LDL cholesterol
at all values of TG, Cholesterol and HDL (Table -2, 3, 4).
The difference was maximum at TG value 300-
400mg/dl (19.5%difference) Table 2. Cholesterol
>200mg/dl (11.7% difference) Table 3. HDL<40mg/dl
(difference 12.6%) Table-4.

Further on applying Anandraja’s formula there
was underestimate of LDL cholesterol values
compared to direct LDL cholesterol values. The
difference was maximum at TG value 300-400mg/dl
(22.2% difference) Table-2, Cholesterol<100mg/dl
(22%difference) Table-3, HDL<40mg/dl(19.7%
difference, Table-4. However, at HDL level >60mg/dl
there was overestimation of LDL cholesterol.

Subjects were divided into two categories
taking NCEP criteria of 130 mg/dl LDL cholesterol as
cut off. It was seen that more number of subjects were
classified into lower risk category ((130 mg/dl) by using
calculated LDL measurement than by direct LDL.
According to Friedwald formula and Anandraja’s
formula 9.8% and 6.4% patients were classified under
low risk category respectively (Table-5).

Further our study showed strong positive
correlations between dLDLC and all calculated LDLC
(FFLDL and DLDL, r=0.95, r<0.005) Figure-1a,
AnandaraJA’s formula LDL and DLDL(r=
0.91,p<0.001) Figure 1b. The calculated LDLC
showed a negative bias on Bland–Altman graphs,
FFDL (bias 12.4 with a mean difference ± SD 8.3-33)
Figure-2a and AnandaraJA’s formula had bias 11.3 with
a mean difference ± SD of -17.4-40, Figure-2b, Table-6.
Table-1: Mean baseline values of study population

Age (years)	48.8 ± 14.2 years (males), 42.1 ± 4.6 years (females)
Sex	342 (68.4%, Male), 158 (31.6%, Female)
Triglyceride level (mg/dL)	145.7 ± 87.6 mg/dL
Total cholesterol level (mg/dL)	175 ± 40.04 mg/dL
HDL cholesterol level (mg/dL)	53.5 ± 12.39 mg/dL
Direct LDL cholesterol (mg/dL)	108.4 ± 34.2 mg/dL
Friedewald’s calculation (mg/dL)	95.8 ± 32.5 mg/dL
Anandaraja’s calculation (mg/dL)	97.4 ± 32.73 mg/dL

Table-2: Classification of subjects showing difference between direct and calculated LDL cholesterol level depending on Triglyceride level

TG (mg/dL)	TG (mg/dL)	DLDL (mg/dL) (mean±SD)	FFLDL (mg/dL) (mean±SD)	%FF (Diff)	AFLDL (mg/dL) (mean±SD)	%AF (Diff)
<100 (n=53)	77.7 ± 9.8	94.6 ± 8.7	87.5 ± 8.9	7.5	91.7 ± 9.5	3.1
101-200 (n=282)	174.1 ± 11.2	97.8 ± 10.7	86.8 ± 10.5	10	85.7 ± 10.8	12.0
201-300 (n=140)	232.9 ± 12.1	114.6 ± 12.8	97.3 ± 12.2	15.6	93.8 ± 12.1	18.1
301-400 (n=25)	342.5 ± 4.2	115.9 ± 14.7	93.3 ± 5.9	19.5	90.1 ± 7.7	22.2

n= No of Patients TG = Triglyceride, DLDL = Direct homogenous assay Low density lipoprotein Cholesterol, FFLDL = Friedewald’s formula LDL cholesterol, %FF (Diff) = difference between DLDL and FFLDL Cholesterol, AFLDL = Anandaraja’s Formula LDL cholesterol, %AF (Diff) = Difference between DLDL and AFLDL Cholesterol

Table-3: Classification of subjects showing difference between direct and calculated LDL cholesterol level depending on total cholesterol level

Chol (mg/dL)	Chol (mg/dL)	LDL (mg/dL) (mean±SD)	FFLDL (mg/dL) (mean±SD)	%FF (Diff)	AFLDL (mg/dL) (mean±SD)	%AF (Diff)
<100 (n=70)	89.5 ± 10.3	47.8 ± 12.1	42.6 ± 12.9	10.3	37.3 ± 11.9	22.0
101-200 (n=158)	155.9 ± 9.8	99.4 ± 10.2	88.5 ± 14.1	11.1	88.0 ± 12.9	11.5
>200 (n=272)	224.3 ± 14.1	153.4 ± 12.8	135.5 ± 12.7	11.7	138.5 ± 12.4	9.7

n= No of Patients Chol = Cholesterol, DLDL = Direct homogenous assay Low density lipoprotein Cholesterol, FFLDL = Friedewald’s formula LDL cholesterol, %FF (Diff) = difference between DLDL and FFLDL Cholesterol, AFLDL = Anandaraja’s Formula LDL cholesterol, %AF (Diff) = Difference between DLDL and AFLDL Cholesterol

Table-4: Classification of subjects showing difference between direct and calculated LDL cholesterol level depending on HDL cholesterol level a

HDL (mg/dL)	HDL (mg/dL)	LDL (mg/dL) (mean±SD)	FFLDL (mg/dL) (mean±SD)	%FF (Diff)	AFLDL (mg/dL) (mean±SD)	%AF (Diff)
<40 (n=193)	32.8 ± 9.2	100.7 ± 10.2	88.4 ± 7.3	12.6	81.0 ± 12.1	19.7
40-60 (n=283)	47.7 ± 8.5	113.7 ± 8.3	101.8 ± 10.4	10.1	106.5 ± 6.1	7.2
>60 (n=24)	68.6 ± 2.1	128.5 ± 9.4	117.4 ± 5.4	8.1	139.4 ± 7.1	-10.9

n= No of Patients HDL = HDL cholesterol, DLDL = Direct homogenous assay Low density lipoprotein Cholesterol, FFLDL = Friedewald’s LDL cholesterol, %FF (Diff) = difference between DLDL and FFLDL Cholesterol, AFLDL = Anandaraja’s Formula LDL cholesterol, %AF (Diff) = Difference between DLDL and AFLDL Cholesterol
Table-5: Classification of subjects taking 130 mg/dL LDL-C as cutoff level as per NCEP criteria

<table>
<thead>
<tr>
<th>LDL-C mg/dL</th>
<th>D-LDL</th>
<th>FFLDL</th>
<th>AFLDL</th>
<th>Diff (LDL and FFLDL)</th>
<th>Diff (LDL and AFLDL)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td><130 (Low Risk)</td>
<td>268(53.6%)</td>
<td>317(63.4%)</td>
<td>300(60%)</td>
<td>9.8%</td>
<td>6.4%</td>
<td><0.05</td>
</tr>
<tr>
<td>>130 (High Risk)</td>
<td>232(46.4%)</td>
<td>183(36.6%)</td>
<td>200(40%)</td>
<td></td>
<td></td>
<td><0.05</td>
</tr>
</tbody>
</table>

Fig-1a: Comparison of F-LDL-C vs. D-LDL-C. Scatter plot of F-LDL-C against directly measured LDL-C

Sample size 500
Correlation coefficient r 0.9570
Significance level P<0.0001

Fig-1b: Comparison of F-LDL-C vs. D-LDL-C. Scatter plot of AF-LDL-C against directly measured LDL-C

Sample size 500
Correlation coefficient r 0.9069
Significance level P<0.0001
DISCUSSION

Treatments of lipid abnormalities are largely based on the concentrations of LDL-C. Augmenting accurate determination of LDL-C in order to initiate dietary adjustments, drug therapy and to monitor their effects in patients at risk of CHD.

Beta quantification, which is the reference method [7] for LDL-C estimation is time consuming and expensive and is not suitable for routine laboratory testing [23]. Homogenous methods developed during last few years are expensive and have failed to show clear advantages in terms of performance when compared to Friedewald’s calculation [14–16]. But FF has its well-known limitations [11, 23, 26]. Several
efforts made in last few decades to derive more accurate formulas for LDL-C calculation than the widely used Friedewald's formula [27-31] to study the difference in LDL-C values resulting from diversity in terms of study populations and/or pathologies [26, 32, 33]. Anandaraja et al., [19] had described a new formula for calculation of LDL-C and confirmed a reduction in false overestimation of LDL-C compared with FF in Indian population of validated its accuracy in 1008 Indian patients.

The present study was designed to evaluate the performance and compare between direct and calculated LDL-C calculated formula in a group of Indian patients.

We have found directly measured LDL-C to be higher than that obtained by calculation using both the formulas. The only exception was higher A-LDL-C results compared to the measured LDL-C when HDL-C levels were > 60 mg/dl. In our study %LDL-C for FF formula was higher at -12.4% compared to that for Anandaraja’s at -11.3% (Table-1). Other studies by Kamal et al., [13], Kamazeki et al., Vujovic et al., [18] have reported an underestimation of LDL-C by Friedewald’s and Anandraja’s formulas compared to direct LDL-C. Vujovic et al., [18] have also reported higher values for D-LDL-C. They have found a percentage difference of -6.9 for F-LDL-C and -3.9% for A-LDL-C.

The present study showed a significant positive correlation of 0.95 and 0.91 between direct LDL and FFLDL and AFLDL. Other studies have reported a correlation 0.86 [34] and 0.88 [17] and 0.786 [13], respectively. In a study done in Japan, a positive correlation was found between F-LDL-C and D-LDL-C with r² = 0.975 [35]. Anandaraja et al., [19] reported the Pearson’s correlation of 0.97 between LDL-C measured by their formula and D-LDL-C which was better as compared to that for F-LDL-C.

Vujovic et al., have reported a correlation of 0.89 between A-LDL-C and D-LDL-C in the study done in Serbian population [18]. Kamal et al., [13] have also reported a good correlation between these with r = 0.810. In the study by Agrawal et al., [36], comparison of F-LDL-C results with measured LDL-C during three different periods with three different homogenous assays was done. A substantial lack of agreement between direct and calculated LDL-C with higher D-LDL-C values by all the methods in spite of having good correlation coefficients was reported by the authors.

Some studies have reported opposite trends with higher results with calculated LDL-C by FF as compared to measured LDL-C [17, 21]. The difference between measured and calculated LDL-C results can be significant in terms of patients’ risk classification for coronary artery disease. According to NCEP ATP III, LDL-C levels of 160, 130 and 100 mg/dl are the treatment goals for low risk, moderate risk and high risk patients for CHD, respectively [37].

We have found a statistically significant difference in risk classification of patients when direct LDL-C was used instead of the calculated one (Table-6). Similar results have been reported by other authors also [13, 33, 34]. Direct measurement leads to approximately 10% and 6% more patients being candidate for lipid lowering drug therapy as compared to the use of calculated LDL-C. Use of Anandaraja’s formula does not produce any significant effect on patient risk classification when compared to FF

Comparison of LDL-C results obtained by Friedewald and Anandraja’s formulas at different levels of the TG, Chol and HDL indicates that at higher TG, Chol and HDL concentrations produce maximum difference in calculated LDL-C results. As TG levels increase, increase in mean difference between the results of direct and F-LDL-C has been reported in previous studies [13, 38]. Our results support this finding.

LDL-C results obtained by calculated formulas show very good correlation with the measured LDL-C but the negative bias in results is responsible for producing different results compared to the directly measured LDL-C.

CONCLUSION
Calculated LDL-C results obtained by Friedewald’s and Anandraja’s formulas show very good correlation with the measured LDL-C but underestimate risk of heart disease when compared to direct LDL cholesterol. Thus, for evaluating patients with hyperlipidemia, the direct method of determining the LDL-C appears to beneficial than the calculated LDL values.

LDL-C is considered as the primary basis for diagnosis, treatment and risk classification of patients with hyperlipidemia. The different modified formulas have been validated in different population with controversial results hence it is imperative to validate all these formulas normal healthy and diseased in large populations for a definitive concluding remark.

Conflict of interest
The authors declare no conflict of interest

Acknowledgement
We acknowledge all the staff members in VMMC and SJH hospital for their kind cooperation in this study.

REFERENCES

should not be used for management of lipoprotein abnormalities in patients with diabetes mellitus. Diabetes care. 1993 Aug 1;16(8):1081-6.

