Environmental pollution and its hazards are the most important problems of societies and living creatures. On the other hand, increased population with the development of technology and production can cause a lack of attention to environmental safety. Industrialization leads to the pollution of ecosystems. Industrial effluents are discharged into rivers and lakes from where it leaches into the soil and ground water, or is emitted into the air as particulate matter [1, 2]. Heavy metals are critical in this regard because of their easy uptake into the food chain and of bioaccumulation process [2, 3]. Metals tend to accumulate in water [4, 5], but they may be released under certain physicochemical conditions, moving up through the food chain [6]. Some metals are essential for normal physiological functioning of fish but become toxic when they accumulate in their body tissues and are not metabolized. In addition, significantly higher concentrations of metals in fish can change its physiological functioning that could lead to high mortality and ultimately loss of fish biota [7]. The river system may be extremely contaminated with heavy metals released from domestic, industrial, mining and agricultural effluents. Heavy metal contamination may have disturbing effects on the ecological balance of the recipient environment and a diversity of aquatic organisms [8, 9, 10]. Among animal species, fishes are inhabitants that cannot escape from the detrimental effects of these pollutants [11]. The impact of metals, as well as other pollutants, on aquatic biota can be evaluated by toxicity test, which are used to detect and evaluate the potential toxicological effects of chemicals on aquatic organisms. However, little research has been done on the impact of contaminations on tropical ecosystems [12]. Fish are widely used to evaluate the health of aquatic ecosystems because pollutants build up in the food chain and are responsible for adverse effects and death in the aquatic systems. Fish can obtain their trace elements, either directly from the water through the gills or indirectly from food through the alimentary tract [13].

Heavy metals like Co, Zn, Ni, Cu, Se, Mn, Fe, and Cr are essential for the growth of organisms, while Pb, As, Hg and Cd are not only biologically non essential, but these heavy metals beyond optimum threshold levels found to be hazardous and toxic. After entering the water body these metals may participate, get absorbed on solid surface, remain soluble or suspended in water or taken up by fauna. The most important biological property of metal is their tendency to accumulate in the animal tissues.

Cobalt is a toxic element that exists in special fertilizers and waste water following the evolution of cobalt mines. Metals such as cobalt may cause environmental risk when occurring at raised levels [14,15], although cobalt is of relatively low abundance in the earth’s crust and in natural waters.

Lead is highly toxic metal as it is reported to be responsible for death or sub-lethal changes in reproduction, growth and behavior of the fish [16].
Lead in the form of Pb\(^{2+}\) is most common and stable ion in aquatic environments and has strong tendency to get bio-accumulated in fish organs like gills, kidney, liver, muscles, scales and skin [17, 18]. Under the exposure of waterborne lead, fish exhibits a wide range of neurological and muscular abnormalities, growth inhibition, reproductive problems and mortality [19].

The term bioaccumulation refers to the wastes, which have been re-concentrated in organisms often having undergone initial dilution in environment producing toxic effects in fishes. Among the heavy metal pollutants, lead and cobalt receives a special attention due to its potential health hazard to aquatic fauna accumulation in freshwater fishes and human life in particular.

The present study was undertaken to investigate the toxicity of lead and cobalt on zebrafish, *Danio rerio*. The zebrafish is selected for this experiment because it has great benefits, with regards to high fecundity, small size approx 2-5 cm long, easy to breed in laboratory, short generation time, rapid development, translucent embryos and easy to maintain under laboratory conditions. *Danio rerio* was selected for the present study because they are model organism for toxicological research and also recommended by the Organization for Economic Co-operation and Development (OECD, 1992) [20].

MATERIALS AND METHODS

Zebrafish, *Danio rerio* were reported from Uttar Pradesh [21]. They were collected from the local ponds, stocked and acclimatized for a time period of 10-15 days under the laboratory conditions in glass aquaria containing dechlorinated water. The water of the aquarium was aerated continuously through stone diffusers connected to a mechanical air compressor. Water temperature maintained between 25±2 °C. These conditions were sustained during the entire length of the experiments and the fishes were fed with commercial fish pellets, goat liver, tubifex worm and brine shrimps. The standard stock solution of lead was prepared from C4H6O4Pb. 3H2O (Lead acetate) and cobalt was prepared from CoCl2.6H2O (Cobalt chloride) in distilled water. All the chemicals used were analytical grade (S d Fine Chemicals Limited, Mumbai) using adult zebrafish about 3 to 3.5 cm body length.

Toxicity test was performed in laboratory to determine the 24, 48, 72 and 96 hour LC\(_{50}\) values using five concentrations of Pb 10, 15, 20, 25 and 30 mg/L and Co 60, 65, 70, 75 and 80 mg/L, both the solution were prepared in distilled water. The randomization of the fish in test aquaria was done according to the method prescribed by the U.S. Federal Water Pollution Control Administration, 1968. Ten fishes were used for each concentration. Water was changed daily with fresh treatment of metals. Six replicates for each concentration were used accompanied by a control having no treatment. The control group was kept in water without adding the metals, keeping all the other conditions constant. The mortality was recorded at the end of 24, 48, 72 and 96 h. The feeding was stopped during the experiments. A fish was considered dead when its gill movement ceased and it did not respond to gentle prodding. Dead fishes were removed carefully from aquarium to avoid deterioration. The result were computed by Stat plus® 2009 computer software purchased from Analystsoft Vancouver, Canada. The LC\(_{50}\) values, upper and lower confidence limits (UCL and LCL), slope, Chi-square values were calculated. The behavioral changes in treated zebrafish were also observed during the entire exposure period of the heavy metals.

RESULTS AND DISCUSSION

After the exposure of both heavy metals, the zebrafish showed some behavioral changes, like erratic swimming and loss of equilibrium. They aggregated at one corner of the aquarium, resting at the bottom and frequently come to the surface followed by the heavy breathing with stronger opercular movement and over secretion of mucus from the body surface was observed. The zebrafish in control aquarium were observed to be healthy active, normal and no mortality was recorded.

The data obtained from the toxicity test of Pb and Co for zebrafish shows that the fish mortality increased with increasing concentration and exposure time. The estimated lethal concentration values for 24, 48, 72 and 96-h and their upper and lower confidence limits, slope values, and chi-square values on each metal are presented in table 1. The 24-h LC\(_{50}\) for cobalt was 90.04 mg/L while it was 69.83 mg/L after 96-h of exposure. On the other hand the 24-h LC\(_{50}\) for lead was 41.27 mg/L and after 96-h it was 21.63 mg/L.

Heavy metals are produced from a variety of natural and anthropogenic sources [22]. In aquatic environments, heavy metal pollution results from direct atmospheric deposition, geologic weathering or through the discharge of agricultural, municipal, domestic or industrial waste products, also via wastewater treatment plants [23, 24, 25, 26]. The contamination of heavy metals and metalloids in water and sediment, when occurring in higher concentrations, is a serious threat because of their toxicity, long persistence, and bioaccumulation and bio magnification in the food chain [27, 28]. Bioaccumulation factor is the ratio of concentration of heavy metals accumulated in the tissue of fish with respect to the concentration of heavy metal in surrounding water and suspended food materials. Fish are located at the end of the aquatic food chain and may accumulate metals and pass them to human beings through food causing chronic or acute diseases [29].

Available online at http://saspublisher.com/sajb/
The fact is that metals are non biodegradable and can accumulate in the environment, make them deleterious to the aquatic organisms and consequently to human being who consume fish as a food source. The heavy metals in the aquatic system may accumulate in aquatic organisms through different routes such as direct uptake from water by gills or body surface [30].

The present study was initiated to find the susceptibility of the Zebrafish, Danio rerio to potentially hazardous heavy metals Lead and Cobalt. Fishes are confined exclusively to aquatic habitats, constitute the group most vulnerable to heavy metal toxicity. Aquatic toxicity test are used to evaluate the potential toxicological effects of environmental contaminants on aquatic biota [31]. It is necessary to study the presence of water borne heavy metals on tolerant of the most sensitive bio-indicators of aquatic pollution, particularly fish [32].

Lead is a naturally occurring heavy metal characterized as health hazardous substance [33]. In environment, concentration of Pb is significantly increased by anthropogenic sources such as fossil fuel burning, mining, battery manufacturing, metal product like solder and pipes for water supply, X-ray shielding devices, leaded gasoline, glass containers of food and beverages [34]. Uses of lead in the chemical industry for preparing paints, pigments and colored inks was widespread but many countries have now restricted their use [35]. The natural concentration of lead in surface water has been estimated at 0.02µg/L and it rarely exceeds a few micrograms/L. However, high levels of lead are associated with areas in the vicinity of lead mines and battery-producing industries.

Exposure to high lead levels in the aquatic system can cause generative damage and alteration in blood and nerves cells in fish and other aquatic organisms [36, 37]. Study of lead toxicity in the present day is very important because of its effect on human health [38, 39].

Ullah et al. [40] reported that 96-hr LC50 of Lead Nitrate for the fish Oreochromis niloticus 44 mg/L. Batool & Javed [41] reported that with Catla catla, Cirrhina mrigala and Labeo rohita, 96-hour LC50 of cobalt were 86.32±0.37, 117.39±0.36 and 106.12±0.38 mg/L, while for the lead with Catla catla, Cirrhina mrigala and Labeo rohita, 96-hour LC50 were 31.25±0.22 , 40.54±0.32 and 36.72±0.37 mg/L respectively. Cobalt appeared least toxic metal in comparison to lead. Ferrer et al. [42] has reported the 96-h LC50 values 1093.40 µg/L for Pb, 219.20 µg/L for Cu and 172.10 µg/L for Zn in the early life stage of the crab Chasmagnathus granulatus. Chinni & Yallapragada, [43] carried out acute toxicity test with metals (Pb, Zn, Cd and Cu) on Penaeus indicus post larvae. The resulting 96-h LC50 values showed that copper was the most toxic metal followed by that of cadmium, zinc and lead. LC50 values were 2.535, 3.119, 6.223 and 7.283 mg/L respectively.

Similar results were also found by other researchers with different heavy metals for the same fish. The value of LC50 may vary in the same fish for the same heavy metals determined by some scientists. This is attributed to the fact that several factors including differences in the test species, age, feeding habit, sex, composition of toxicant and also the experimental conditions under which the tests are performed.

Cobalt is an essential nutrient for man and is an integral part of vitamin B12. It performs important biochemical function but its higher concentration in aquatic ecosystems becomes toxic to fish as it interferes with the enzyme systems [44]. It is reported to be a potential carcinogenic compound and has been included recently in group 2A carcinogens (i.e., probably carcinogenic to humans). The maximum of authorized cobalt in the air, water and earth are 1-5 mg/m³, 1 mg/L and 1 mg/m³, respectively. Cobalt concentration in rivers are low at about 0.2 mg/L [45]. In human the average daily intake of cobalt in all forms ranges from 0.30 to 1.77 mg/day [46]. It has also been implicated in blood pressure regulation [47], and has been found to be necessary for proper thyroid function [48]. Excessive ingestion of cobalt is reported to cause congestive heart failure, polycythemia and anemia [49].

Results of acute-toxicity test on marine fish have shown that cobalt has a low toxicity, with 96-h LC50 ranging from 52.5 to more than 1000 mg/L [36]. Several studies reported the 96-h LC50 values of CoCl₂ on Pimephales promelas, and Carassius auratus, rainbow trout (Oncorhyncus mykiss) were 21.8 mg/L by Ewell et al. [50], and 333 mg/L by Das & Kaviraj [51], and 1.4 mg/L by Marr et al. [52] respectively.

Nath & Kumar [53] found that Co at 2.18 mmol/L was lethal to 50% of Colisa fasciatus in 24 hour. In a study Jaseen, [54] found that 100% mortality on blind Mexican cave fish at very low concentration of cobalt i.e. 2 mmol/L within 14 hours of exposure period. Toxicity of cobalt to fish has been little studied because it is not a common contaminant in waterways. Naseem et al. [55] carried out acute toxicity test with metals (Cu and Co) on Tilapia nilotica. The resulting 96-hour LC50 values showed that copper was the most toxic metal followed by that of cobalt. LC50 values of copper and cobalt were 25±0.53 and 95±1.48 mg/L respectively. However, lethal concentrations of copper and cobalt for Tilapia nilotica, were 48±0.25 and 178±1.31 mg/L in separate studies with Cyprinus carpio, Naji et al. [56] reported 96-H LC50 of cobalt as
327.5 mg/L. Yaqub & Javed [44] reported that Indian major carps viz. *Labio rohita*, *Cirrhinus mrigala* and *Catla catla* showed more sensitivity towards cobalt than cadmium.

The toxicity of lead was significantly higher when compared to cobalt, after 96-h of exposure in zebrafish. It is therefore biologically reactive and gives rise to acute poisoning. This difference could be due to the biological diversity and functional variability of cells and tissues to chemical pollutants. Toxicity of metals may vary depending upon their permeability and detoxification mechanisms [57]. The results obtained in this study clearly indicate that it is necessary to control the use of heavy metals especially lead.

The slope values are steep, which indicate that the test animals are very sensitive to even the minor change in concentration of the toxicant. The LC$_{50}$ values of metals showed a significant (p<0.05) negative correlation with exposure time. The chi-square values are not significant indicating that the fish population used in the experiment was homogeneous (Table- 1). In the present study it was found that the *Danio rerio* was highly sensitive to lead than cobalt.

Table 1: Toxic effect of two different heavy metals lead and cobalt against zebrafish, *Danio rerio* (Cyprinidae)

<table>
<thead>
<tr>
<th>Heavy metals</th>
<th>Exposure Period (h)</th>
<th>LC$_{50}$ values (mg/L)</th>
<th>Confidence limits</th>
<th>Slope</th>
<th>Chi-square values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>24</td>
<td>41.27</td>
<td>32.87, 49.68</td>
<td>1.64</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>35.78</td>
<td>29.02, 42.53</td>
<td>1.90</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>24.43</td>
<td>19.25, 29.60</td>
<td>2.09</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>21.63</td>
<td>15.89, 27.37</td>
<td>2.16</td>
<td>0.89</td>
</tr>
<tr>
<td>Cobalt</td>
<td>24</td>
<td>90.04</td>
<td>89.92, 98.17</td>
<td>1.28</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>81.67</td>
<td>69.20, 96.79</td>
<td>1.24</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>75.44</td>
<td>68.92, 81.96</td>
<td>1.21</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>69.83</td>
<td>65.95, 73.72</td>
<td>1.12</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The slope value shown in the table one is steep. The LC$_{50}$ values of the heavy metals showed a significant (p<0.05) negative correlation with exposure time. The chi-square values were not significant, indicating that the fish population used in the experiment was homogeneous.

ACKNOWLEDGEMENTS

The authors thankfully acknowledge the Council of Science and Technology, Uttar Pradesh (Project no- CST/D- 388/ 2015) for financial assistance and to Prof. D.K. Singh, Head of the Department of Zoology, DDU Gorakhpur University, Gorakhpur for providing laboratory facilities to conduct this research work.

REFERENCES

30. Ron van der Oost, Jonny B, Nico PE, Vermeulen; Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Env. Toxi. And Pharma., 2003; 13(2), 57-149.

35. WHO; Cobalt and inorganic cobalt compounds. Concise International Chemical Assessment Document., 2006; 69, pp. 93-99.