Assessment of Plasma Malondialdehyde and Uric Acid among Sudanese Patients with Type-2 Diabetes Mellitus in Khartoum State

Hazim Ahmed¹, Noon Mohammed¹, Mohammed abdelrouf², Mohammed El-mak³, Mamoun Elmanna⁴

¹College of Medical Laboratory Sciences, University of Sciences and Technology, Omdurman, Sudan.
²College of applied medical sciences, King Khalid University, Abha, KSA
³Faculty of Medical Laboratory Sciences, Al-Neelain University, Sudan.
⁴College of Medicine, University of Sciences and Technologies, Omdurman, Sudan.

*Corresponding author
Hazim Abdelrahim Ahmed
Email: hazim_1381@yahoo.com

Abstract: Diabetes mellitus (DM) describes a metabolic disorder of multiple etiology, which is characterized by chronic hyperglycemia, with disturbances of carbohydrate, fat and protein metabolism, which result from defects in insulin secretion, insulin action, or both [1]. Non-insulin-dependent diabetes mellitus is one of the most widely spread and severe disorder currently, globally. The number of patients suffering from diabetes mellitus was reported to be over 381.8 million people worldwide [2]. In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes and recent studies suggest a possible relationship between lipid peroxidation and complications of diabetes mellitus [3,4]. It has been shown that an increase in free radicals production in type2 diabetes mellitus occurs due to lipid peroxidation or non enzymatic glycosylation of proteins or antioxidantation of glucose. Poor glycaemic control in type2 DM also has been associated.

INTRODUCTION
Diabetes mellitus (DM) describes a metabolic disorder of multiple etiology, which is characterized by chronic hyperglycemia, with disturbances of carbohydrate, fat and protein metabolism, which result from defects in insulin secretion, insulin action, or both [1]. Non-insulin-dependent diabetes mellitus is one of the most widely spread and severe disorder currently, globally. The number of patients suffering from diabetes mellitus was reported to be over 381.8 million people worldwide [2]. In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes and recent studies suggest a possible relationship between lipid peroxidation and complications of diabetes mellitus [3,4]. It has been shown that an increase in free radicals production in type2 diabetes mellitus occurs due to lipid peroxidation or non enzymatic glycosylation of proteins or antioxidantation of glucose. Poor glycaemic control in type2 DM also has been associated.

Oxygen free radicals and lipid peroxides have been implicated in the pathogenesis of a large number of diseases such as Diabetes mellitus, cancer, rheumatoid arthritis, infectious diseases, and atherosclerosis. Malondialdehyde (MDA) is a highly toxic by-product formed in part by oxidation derived from free lipid radicals, and studies have shown considerably raised concentrations in diabetes mellitus. MDA reacts both irreversibly and reversibly with proteins and phospholipids with profound effects [5]. Hyperuricemia has been also added to the set of metabolic abnormalities associated with insulin resistance and/or hyperinsulinemia in metabolic syndrome [3,4,6]. Hyperuricemia is a condition that is significantly associated with markers of metabolic syndrome such as dyslipidemia, Glucose intolerance, high blood pressure, and central obesity, which are accepted as risk factors for developing cardiovascular disease. Hyperuricemia is probably associated with glucose intolerance due to various mechanisms; however, the most important is the association between insulin and renal resistance to absorption of urates [7-9]. Recent studies have demonstrated that UA levels are...
higher in subjects with prediabetes and early Type 2 diabetes than in healthy controls [10,11]. Furthermore, an elevated serum uric acid (UA) level was found to increase chances for developing Type2 diabetes in individuals with impaired glucose tolerance[12]. The objective of the current study was to assess some of the biochemical parameters related to diabetic patients.

MATERIAL AND METHODS

The study was a descriptive, case control hospital based study. 250 Sudanese patients with Type 2 diabetes mellitus were involved as test group and 150 apparently healthy subjects (non-diabetics) as control group. Age and sex of both groups were matched. This study was conducted in Khartoum state (Al-Amal national hospital) during the period between September 2013 to June 2016. Patients with type 1 DM, renal failure, liver disease, anemia, and thyroid disease were excluded from this study. All ethical consideration and concern forms were obtained prior the research.

The Plasma MDA, UA, fasting blood glucose (FBG) and HbA1c were measured for patients and healthy subjects. The body mass index (BMI) was calculated based on the following formula[13].

\[
\text{BMI} = \frac{x \, \text{KG}}{(y \, \text{M} \times y \, \text{M})}
\]

Where:
- \(x\) = bodyweight in KG
- \(y\) = height in m

Statistical Package for Social Science (SPSS version 13) computer software was used for data analysis. The means and standard deviations of the plasma levels of MA, uric acid and fasting plasma glucose were calculated and T-test (independent T samples) was used for comparison (significant level was set at \(P \leq 0.05\)).

Linear regression analysis was used to assess the correlation between the HbA1c, duration of diabetes, and BMI) and the plasma levels of MA, UA, and FBG. The results presented in form of tables and figures.

RESULTS

In this study, Height BMI distribution was significantly different between control and patients (\(P < 0.05\)). While there was no significant differences regarding the weight (\(P = 0.17\)) (Table 1). Figure 1 illustrated the strong positive correlation between the changes in BMI and plasma level of malondialdehyde among the test group (\(P < 0.05\)).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control (none-diabetics) (n=150)</th>
<th>Test Group (diabetics) (n=250)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) (Min-Max)</td>
<td>49.1±13 (36.0-62.0)</td>
<td>51.2±13 (38.0-64.0)</td>
<td>0.1</td>
</tr>
<tr>
<td>Weight (kg) (Min-Max)</td>
<td>64.8±10.4 (50.0-109.0)</td>
<td>66.3±8.8 (49.0-89.0)</td>
<td>0.17*</td>
</tr>
<tr>
<td>Height (m) (Min-Max)</td>
<td>167.5±6.4 (148-190)</td>
<td>163±8.7 (142-192)</td>
<td>0.001*</td>
</tr>
<tr>
<td>BMI (w/h²) (Min-Max)</td>
<td>23.1±3.3 (17.7-36.2)</td>
<td>24.9±3.1 (24.0-36.0)</td>
<td>0.001*</td>
</tr>
</tbody>
</table>

* Significant differences in all blood parameters (except copper not significant \(P > 0.05\)) between control and test group (\(P\) value < 0.05).
The results also showed highly significant difference between the means of plasma MDA of the test group and the control group Means: (63±40.1) versus (49.8±30.0) nmol/l, respectively ($P = 0.001$). Furthermore, there was a highly significant difference between the means of plasma UA, HbA1c% and FBG between the studied groups ($P = 0.001$) as shown in Table 2. There was a significant moderate negative correlation between the changes in plasma HbA1c% and plasma uric acid among the test group ($P< 0.05$) as shown in Figure 2.

Diagram 1: Scatter plot shows the relationship between BMI and plasma level of MA of the test group

Diagram 2: Scatter plot shows the relationship between plasma HbA1c% and plasma UA in the test group

DISCUSSION

Diabetes is one of the fastest-growing health problems in the world (especially type 2), which is reaching epidemic proportion in some regions, as consequence of life-style, lack of exercise, unhealthy diet, obesity and overweight. In 2013, 382 million people had diabetes; this number is expected to rise to 592 million by 2035 [14]. During the past 20 years, major socio demographic changes have occurred in Sudan, and changes in physical activity and dietary patterns have promoted the development of non-communicable disease, such as diabetes mellitus. The microvascular and naturopathic complications of DM
are a major clinical and public health problem in Sudan [15].

Body mass index of diabetic subjects was found to be higher than that of non-diabetics this results agree with the study done by Helen et al. [16]. Similar studies had been reported that there was strong interrelation between BMI and type 2 DM which states that increase in BMI predisposes to type 2 DM [17]. The results also was in accordance to with a study done in USA which found that obesity and overweight strongly correlated with diabetes mellitus among American subjects [18].

In this study a significant difference between the means of plasma MDA of the patients and control, this was agreed with study done by Kalaivanam et al reported that there is significant increase in MDA levels among control diabetic patients in comparison to the uncontrol diabetic patients who have poor glycemic control [19]. Rama Srivatsan et al have reported an increased MDA levels in uncontrol diabetics among a Southern Karnataka population [20]. In 2009, Manjulata et al followed by Kumar et al in 2011, reported that increased oxidative damage in diabetes as shown by elevated MDA level in diabetic with poor glycemic control [21, 22].

Other finding of this study was slightly significant positive correlation was reported between plasma MDA of test group and BMI and duration of disease. This agreed with results obtained by Yazum et al and Karatas whom observed significant increase in the MDA in diabetic patients with increased BMI and duration of the diseases [23, 24] on the other hand, the result was disagree with study done by Benitiz et al. and Freitas et al they reported no correlation between the duration of diabetes mellitus and level of MDA in patients with type 2 [25,26].

In this study there was no significant relationship between MDA and HbA1c %of the test group, this finding disagree with study done by Desai Vidyta et al who their study showed a positive correlation between plasma MDA and HbA1c. Their results suggested that increased lipid peroxidation and a decline in the antioxidant defense mechanisms plays a very important role in the initiation and progression of micro-vascular complications [27].

In the current study highly significant difference between the means of plasma UA of the test group and the control group was noticed. The result was agreed with results obtained by Satoru et al which report plasma UA levels in patients with type 2 diabetes are significantly increased [28]. A possible explanation for this is the biologically role of UA in worsening of insulin resistance by inhibiting the bioavailability of nitric oxide in vascular smooth muscle and endothelial cells and direct scavenging of nitric oxide by uric acid [29]. Decrease in endothelial nitric oxide production by uric acid, has been also associated with endothelial dysfunction and insulin resistance [30]. Hyperinsulinemia as a consequence of insulin resistance causes an increase in serum uric acid concentration by both reducing renal uric acid secretion and accumulating substrates for uric acid production [29].

The results showed no significant relationship between plasma level of plasma UA and BMI of the test group, this disagree with Tsushima et al; According to his report, UA secretion from adipose tissue in obese was increased. Among obese subjects, excessive fat accumulation in obesity could produce and secrete uric acid and is relatively associated with overproduction-type hyperuricemia. This may provide a possible mechanism for the relationship between BMI and plasma uric acid [31].

CONCLUSION

The means of plasma malondialehyde, plasma uric acid, fasting plasma glucose, and HbA1c of the test group (diabetics) are significantly raised when compared with healthy control group, while the means of plasma copper slightly raised but there is no significant difference in Sudanese patients with type 2 diabetes mellitus when compared with healthy control subjects.

There is significant reduction of the means of the plasma levels of malondialehyde and copper of the control diabetic patients when compared with uncontrol diabetic patient, where there is insignificant differences between the means of plasma levels uric acid, FPG and HbA1c between two groups.

The means of plasma levels of malondialehyde of the diabetic patients on hypoglycemic drugs are significantly raised when compared with those were not, where there is insignificant differences between the means of plasma levels uric acid, HbA1c and FPG between two groups.

Significant strong positive correlation between BMI, duration of diabetes, plasma malondialehyde, and HbA1c, on one hand, moderate negative correlation with plasma uric acid, and there is significant strong negative correlation between the BMI and plasma levels of FPG.

There is significant moderate positive correlation between HbA1c and plasma uric acid, where there is no significant relationship between HbA1c and plasma malondialehyde of the test group was reported.

There is significant strong positive correlation between the duration of disease (in years) and HbA1c and, slightly significant strong positive correlation
between the duration of disease and plasma malondialdehyde, on one hand, there is moderate positive correlation between duration of disease and FPG of the test group was reported.

Acknowledgement:
The authors are grateful to all patients and all who support this study.

Conflict of interest:
There was no conflict of interest

REFERENCES
16. Looker HC, Knowler WC, Hanson RL; Changes in BMI and Weight Before and After the Development of Type 2Diabetes. Diabetes Care, 2001; 24: 1917-1922.
25. Benitez S, Perez A, Sanchez-Quesada JL; Electronegative low-density lipoprotein subfraction from type 2 diabetes subjects is proatherogenic and unrelated to glycemic control. Diabetes Metab Res, 2007; 23:26-34.

