The assessment of echocardiographic findings of diabetes in Sudanese

Mohammed A. Alhaj1, *Moawia Gameraddin2, AlsafiAhmed1, Mahmoud S. Babiker2

1Sudan University for Science and Technology, Faculty of Medical Radiological Sciences
2Taibah University, Faculty of Applied Medical Sciences, Almadinah Al-munawarah, King of Saudi Arabia.

*Corresponding author
Dr. Moawia Gameraddin
Email: m.bushra@yahoo.com

Abstract: Diabetes is the most common metabolic disease that affect the heart and blood vessels and cause severe morbidity and mortality. Investigation of the heart in diabetic patients with echocardiography is essential imaging method to study the function and morphology of the heart and to detect early pathological changes. The aim of present study is to assess the echocardiographic findings of diabetic patients compared with healthy controls to determine whether diabetes mellitus has impact on heart morphological parameters and ejection fraction. A total of 113 diabetic patients compared with 130 controls had been selected following the non-probability sampling technique. They were investigated using echocardiography according to the recommendations of the American Society of Echocardiography. All the heart findings were accurately measured by two expert Cardiologists and Sonographer. The age of the study population ranged between 20-85 years old. The interventricular septal thickness and left ventricular posterior wall diameter were significantly higher in diabetes than nondiabetic. p-value = 0.00 for both. The left atrial dimension and aortic root diameter were significantly higher in diabetic patients than nondiabetic, p-values = 0.02 and 0.014 respectively. Ejection fraction and left ventricular dimensions in systole and diastole were statistically significantly different in diabetic and nondiabetic, p-values = 0.957 and 0.839 respectively. Diabetes mellitus has significant impacts on left atrial dimension, aortic root diameter, intetventricular wall thickness and left ventricular posterior wall thickness. According to this study, diabetes has little effect on ejection fraction and left ventricular dimensions in systole and diastole. Further studies with large sample size were needed to confirm the initial results of this study.

Keywords: interventricular, echocardiographic, Ejection fraction

INTRODUCTION
The diabetes is one of the most common metabolic disease affecting people in all ages. In 2010, there were 12.1 million people were estimated to be living with diabetes in Africa, and this is projected to increase to 23.9 million by 2030[1]. The prevalence of diabetes in Sudan shows high rate since Sudan is one of the sub-saharian country which include high prevalence of variable communicable diseases such as HIV [2], Tuberculosis [3] and Malaria [4]. Diabetes is a major common cause of several lethal systematic diseases such as cardiovascular disease [5] and renal disease [6], pneumonia [7], bacteraemia [8, 9] and tuberculosis [10], which have considerable impacts on morbidity and mortality in the region [11-16]. In this study, we aim to determine whether diabetes have impact on heart especially ejection fraction, aortic root diameter, left ventricular posterior wall diameter, interventricular septal thickness and left atrial diameter. All of these parameters had been measured and determined in every case.

The impact of diabetes on heart has been studied and investigated by many researchers. The diabetes initiates the development of atherosclerotic vascular diseases and results of recent clinical studies have shown that not only hyperglycemia but also other risk factors need to be controlled to prevent atherosclerotic vascular events in diabetic patients [17, 18]. In this article we examined diabetic patients (type-2) using echocardiography and selecting control and diabetic groups to investigate the heart and to determine whether there are significant impacts on heart structure and ejection fraction. In Walker et al, study diabetes mellitus (DM) was observed to associate with features of adverse structural and functional cardiac remodelling in patients with chronic heart failure [19]. Diabetes has strong correlation with changes in myocardial functional mehanism and several studies have reported
severe dysfunction of ventricular myocardium in DM patients with potentially poor prognosis. DM diminishes myocardial contractility that related to abnormalities that caused dysfunction of calcium mechanism [20].

The echocardiography palys essential role in evaluating the morphology and function of the heart because this provide accurate data to detect cardiomyopathy as early as possible. The echocardiography evaluates several heart parameters which are key diagnostic factors that shape the final diagnosis of the heart.

AIMS: to evaluate the cardiac morphological parameters in diabetic patients using echocardiography.

MATERIALS AND METHODS

This prospective cross-sectional case-control study was undertaken in 113 patients with type 2-diabetes mellitus and 130 control (healthy), who were referred to the echocardiography to investigate the heart. The patients were selected following the non-probability sampling technique (quota design). The age range was 20-85 years old. The study was conducted in Al-rebat national hospital from the period of 15/1/2015 to 1/4/2016. A data clinical sheet was designed to include the demographic data (region, gender, age, etc.) and clinical history. The individuals of the control group were determined to be healthy by physical examination, chest radiograph and medical history. A normal resting electrocardiogram and chest radiograph were prerequisites for participation. Body Mass Index (BMI) was calculated as weight (kgs.) ÷ [height (m)].

Inclusion criteria: Diabetic patients whose age ranged between 20-85 years old, compared with healthy control group.

Exclusion Criteria: We excluded patients with moderate-to-severe valvular disease, abnormal systolic function, heart failure, coronary artery disease, atrial fibrillation and congenital heart diseases or other severe arrhythmias.

The echocardiographic procedure:

A standard 12 lead electrocardiogram was placed immediately before echocardiography began. Then transthoracic echocardiogram in all its modes (M, 3D and colour Doppler) were performed using a commercially available ultrasound system (Toshiba and Sonyace). The patients were examined in supine position and left lateral decubitus using standard parasternal long axis, short axis and apical views. All measurements and recordings were obtained by the same observer according to the recommendations of the American Society of Echocardiography. The following measurements had been obtained in each case:

1. Inter ventricular septal thickness and left ventricular posterior wall diameter
2. Aortic root diameter
3. Left atrial diameter
4. Ejection fraction
5. Left ventricular systolic diameter
6. Left ventricular diastolic diameter

Data had been analyzed using statistical software program SPSS version 20. The continuous data was analyzed using Independent student t-test to compare between the diabetic and controls. P-values > 0.05 were considered significant.

RESULTS

A total of 113 diabetic patients and 130 health individual (controls) had been evaluated with echocardiography. The age of the study population ranged between 20-85 years old. The gender distribution was demonstrated in figure 1. Figure 2 showed distribution of age groups among gender of the study population and most of the patients located between the age group of 50-60 years old. To compare between the diabetic patients and controls we used independent student t-test. The p-values < 0.05 were considered significant. In table 1 all the measured parameters were statistically significant. In table 2 the majority of the ech parameters were not statistically significant except the dimension of the left atrium which was significantly higher in diabetic patients than controls (p-value =014).

Fig 1: Gender and diabetes in the study population

Fig 2: Distribution of age groups among gender of the study population

Table-1: The measurements of echocardiographic findings (cm) in diabetics and controls.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>characteristic</th>
<th>n</th>
<th>mean</th>
<th>Std. Deviation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>body mass index</td>
<td>Non-diabetes</td>
<td>130</td>
<td>23.19</td>
<td>4.663368</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>diabetes</td>
<td>113</td>
<td>25.37</td>
<td>5.419364</td>
<td></td>
</tr>
<tr>
<td>Interventricular septal thickness</td>
<td>Non-diabetic</td>
<td>130</td>
<td>11.06</td>
<td>1.825</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>diabetic</td>
<td>113</td>
<td>12.08</td>
<td>1.983</td>
<td></td>
</tr>
<tr>
<td>Left ventricular posterior wall Diameter</td>
<td>Non-diabetic</td>
<td>130</td>
<td>10.39</td>
<td>1.558</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>diabetic</td>
<td>113</td>
<td>9.61</td>
<td>1.404</td>
<td></td>
</tr>
<tr>
<td>Aortic root diameter</td>
<td>Non-diabetic</td>
<td>130</td>
<td>28.37</td>
<td>3.775</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>diabetic</td>
<td>113</td>
<td>29.25</td>
<td>4.148</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION

Over the last 2 decades, echocardiography (EC) is the most common invasive imaging modality that provides the most common invasive imaging modality. The current study confirmed that diabetes had significant impacts on the morphology and function of the heart. Large sample size is needed to confirm the initial results of this study.

Limitation of the study

The study faces several problems that may influence the results. The most important problem there is reference values for heart echocardiographic parameters in Sudanese people, so it is difficult to establish final results regarding the impact of diabetes on heart. Secondly, most patients did not recognize the history and duration of diabetes. The sample size is not large enough to generalize the results.

CONCLUSION

The diabetes mellitus type-2 has apparent impact on left atrial dimension, left posterior wall thickness, intraventricular thickness and aortic root diameter. The ejection fraction and dimensions of the left ventricle in systole and diastole were not statistically significant different in diabetic patients and controls according to this study.

REFERENCES


