Can We Consider Elbanna Bariatric by Pass in childhood obesity?

Center Experience and Review of Literature

Abduh Elbanna1*, Abd Elrazek Ali Abd Elrazek2, Khaled Salama

1Professor of laparoscopic and bariatric Surgery- Al Azhar - School of medicine-Al Azhar University-Cairo- Egypt
2Visiting assistant project Scientist, Department of Liver Transplant-UCLA

*Corresponding author
Abduh Elbanna
Email: abduhelbanna@hotmail.com

Abstract: Childhood obesity has become one of the most important public health problems in many industrial countries. The awareness of childhood obesity as a modifiable health risk is high, but many societies do not establish the problem as high priority, as this health care problem may lead to comorbidities and even pre-mature death. In the current manuscript, our aim is to explore the available evidence and develop a consensus on the way forward, additionally to shed light the therapeutic relationships and enhance effectiveness in childhood obesity. We present here our experience to Clue out childhood morbid obesity presented with obesity related –complications. To our knowledge this is the first bariatric by-pass technique used both (banded gastric pouch), fundal resection and by-pass in pediatric obesity by Elbanna novel bariatric technique. Accordingly Bariatric surgery should be considered in complicated cases that failed all other options.

Keywords: bariatric, pediatric, childhood obesity, BMI, Elbanna.

INTRODUCTION

Childhood obesity became one of the most important public health problems in many countries with special concern to industrial countries. In the United States alone, reports dedicating co-morbidities and pre-mature death of children have severe obesity [1-3]. As the prevalence of obesity increases so does the prevalence of the comorbidities associated with obesity. Therefore, it is imperative that health care providers should identify overweight and obese children to start early counseling and therapy [4]. Unfortunately, until now there are no guidelines for bariatric surgery in childhood morbid obesity with complications. Considering such surgical intervention in childhood is a dilemma of substantial debate, however if diet, exercise and drugs fail to control comorbidities-related obesity in children, bariatric interventions should be suggested and the technique of choice should be optimized for each specific case. Until we can establish international guidelines. However discussion with the family (with written preoperative consent) and also with the child with approval ethical committee should be held on prior to the surgical therapy [5-8].

What we have to know about Childhood Obesity and related-medical/surgical management?

Children obesity has become one of the most important public health problems in the world, for example in The United States alone 5 % of children are obese, with the highest prevalence in Black and Mexican-American youth, accordingly, this group has significantly more cardiovascular risk factors and a greater risk for having obesity associated-comorbidities in adulthood [9-11]. For this reason it is imperative that health care providers identify overweight and obese children so that counseling and treatment can be provided.

The body mass index (BMI) is the accepted standard measure of overweight and obesity for children two years of age and older. Calculation of body mass index (BMI) is usually performed by two means;

A-English formula for BMI:

703 x Weight in pounds ÷ (Height in inches)[2]

B-Metric formula for BMI:

Weight in Kilograms ÷ (Height in meters)[2].

However the metric formula is the famous one worldwide. A growing consensus supports the following definitions for children between 2 and 20 years of age.

- **Underweight** – BMI <5th percentile for age and sex
- **Normal weight** – BMI between the 5th and 85th percentile for age and sex
- **Overweight** – BMI between the 85th and 95th percentile for age and sex
Obese or morbid obesity during childhood period [20-29]. Further we will present here for certain comorbidities – associated childhood obesity.

Psychological

In most modern cultures of the developed world there is some bias against individuals with obesity, which presumes that obesity is a character flaw. Old children with obesity have often absorbed the bias themselves, leading to self-criticism, low self-esteem, and hopelessness; these feelings are often barriers to behavior change especially in girls. Unfortunately many families with obesity are sensitive about discussing the issue. Fatness itself is representing a stigma in many societies. Additionally some skin change may exacerbate the psychological behavior e.g: intertrigo, furunculosis, and hidradenitis suppurativa [30-37].

Neurological

The prevalence of idiopathic intracranial hypertension (pseudo tumor cerebri) is increased in children and adolescents with obesity [38, 39]. Neuralgia, neuro-muscular pain-related neuritis and idiopathic-nerve inflammation usually watched in obese or severely obese children.

Endocrine

The reported prevalence of impaired glucose tolerance among obese children and adolescents ranges from 7 to 25 percent, and the prevalence of type 2 diabetes ranges from 0.5 to 4 percent. Obese or morbid obese girls are at increased risk delayed puberty and hyperandrogenism at the time of puberty, additionally early onset poly cystic ovary syndrome (PCOS) is common among them. PCOS can include a variety of clinical abnormalities, including hirsutism, menstrual irregularities, acanthosis nigricans, acne, and seborrhea.

More than 50 percent of obese children have lipid abnormalities as measured by a fasting lipid profile. Additionally children obesity predisposes to a number of other risk factors for atherosclerosis classified to have elevated concentration of serum low-density lipoprotein (LDL)-cholesterol and triglycerides and decreased concentration of high-density lipoprotein (HDL)-cholesterol, accordingly children with obesity are three times more likely to have hypertension than nonobese children during adulthood [40, 47].

GIT and Liver

More than 50 percent of obese, morbid obese or severely obese children have NASH; it is well known that elevated serum aminotransferase concentrations are proportionally correlated with progressive increasing of BMI in many medical situations. We have not sufficient data if such NASH may develop to liver cirrhosis, however long standing NASH with elevated liver enzymes is very suggestive occasion for development of liver fibrosis and cirrhosis [48, 49].

According to our experience we reported few cases presenting with cholilitiathisis during childhood period at 16 years old. However incidence of adult cholilitiathisis will increase in those with a history of childhood obesity.

Pulmonary

Many children with obesity suffering sleep apnea and obesity hypoventilation syndrome and the risk is higher among those with severe obesity. However those with family history of obesity have clinically significant pulmonary diseases [50].

Orthopedic and Rheumatological

Obese children have an increased prevalence of fractures, genu valgum, and musculoskeletal pain. Common orthopedic and rheumatological comorbidities of childhood obesity include slipped capital femoral epiphysis (SCFE), Perh’s diseases and tibia vara (Blount disease). In addition impaired mobility, and lower extremity malalignment than no obese children [51, 52]. Autoimmune diseases and pre-mature rheumatoid arthritis and arthralgia are not uncommon presentation in early adulthood patients with long standing childhood obesity.

Management

The American Academy of Pediatrics (AAP) suggests a staged approach to children obesity...
management. Initially BMI, body weight percentile and comorbidities associated, should be considered and determined by primary care professionals. Additional intervention to address overweight or obesity is divided into stages representing escalating degrees of supervision, education, family counseling, medications and even intervention. These stages are:
● Stage 1: Prevention plus
● Stage 2: Structured weight management
● Stage 3: Comprehensive multidisciplinary evaluation
● Stage 4: Tertiary care intervention.

In stage 4 a multidisciplinary team will determine the success goal with a scientific plan-approach, as guided by established protocols. However the clinician’s experience and each-child clinical presentation may determine various modalities are available including: highly structured diets, medications, or even bariatric surgery. However no guidelines are established for those should go through bariatric interventions, additionally which type procedure is preferred than other surgical options, hence the matter is a case by case center by center, with a matter of debate for each cultural education [53-57].

Our Center Experience
To establish a therapeutic relationship and enhance effectiveness, the communication and interventions should be supported by the entire family, society, school, public media and primary health care. Accordingly, we proposed a new procedure of Bariatric intervention (Novel Elbanna operation) in such complicated case that failed all other options, with surgical modification that would help the overall success.

On June 2014, the female child patient experienced the operation, (Modified Elbanna operation), time of operation was 110 minutes, Gastrographin test was done successfully, and the child did not need any blood administration post-operative. She was discharged on the fourth post-operative day in an average general condition, follow up revealed progressive weight loss without any vitamins, minerals or iron supplementation, she experienced gradual psychological improvement with average biochemical investigations, seven months post-operative the child experienced regular menstruation, On April 2015; 13 months post-operative, her BMI become 29 with accepted psychological condition and nice body contour, she added the following statement; (Now I can play and run like any child, my friends call me every time sharing them the football team).

To our knowledge this is the first reported childhood bariatric operation, using Novel El Banna technique.

DISCUSSION
Obesity is a chronic disease that impairs health-related quality of life in adolescents and children. In 2010, overweight and obesity were estimated to cause 3.4 million deaths, 3.9% of years of life loss, and 3.8% of disability adjusted life-years worldwide. The rising prevalence of childhood obesity in several countries has been described as a global pandemic with special concern to industrial countries, e.g.; USA (Fig.; 1, 2, 3, 4).

![Fig 1: Prevalence of adolescent obesity <20 YO in some American countries](image1)

![Fig 2: Prevalence of adolescent obesity in some African countries](image2)

![Fig 3: prevalence of adolescent obesity, 20 YO in some African countries](image3)

Fig 4: Prevalence of adolescent obesity in some European countries & Australia

Obesity can be considered like the driving force towards pre-mature deaths. It increases the like hood for the development of diabetes, NASH, depression and heart diseases [58-61]. The comorbidities of obesity in childhood include abnormalities in the endocrine, genital, cardiovascular, pulmonary, gastrointestinal, hepatic, orthopedic, neurologic, dermatologic, and psychosocial systems that significantly affect both quality of life and survival. Hence treating childhood obesity means overcoming illness at the present, complications in adulthood future and alleviating the economic burden in the present and future; childhood and adulthood periods.

Due to a lack of nonsurgical options for severely obese adolescents and a demonstrated safety and efficacy record in adults, there has been increasing interest in surgical procedures for weight loss for selected obese adolescents with severe obesity or complicated morbid obesity, hence bariatric surgery remains the only effective sustained weight loss option for morbidly obese patients in many situations, however the procedure is not recommended widely in children with severe obesity, bariatric surgery is the only option-solution for children with complications which affect quality of life or survival in many situations [62-66].

All bariatric operations concerned with restrictive and/or mal absorption maneuvers; less food intake and mal absorption concept. The most common operations performed worldwide are Roux-en-Y gastric bypass (RYGB), the laparoscopic adjustable gastric band (GB), and the sleeve gastrectomy (SG) [67-68]. However, there are no available reports describing the overall success or complications following bariatric surgeries in childhood obesity due to the lack of information or unaccepted idea itself in pediatric field. A new trend of bariatric operation; Modified Intestinal Bypass (MIBP) with or without fundal resection; (Elbanna Technique), Figure (3), recently has been presented as a new promising bariatric surgical technique in adulthood bariatric interventions, by which we can avoid vitamins and trace elements deficiency that usually follows the other surgical bariatric diversion techniques, e.g.; BPD, BPD/DS (biliopancreatic diversion with or without duodenal switch), Roux en Y-GBP, MGB (Mini Gastric Bypass), and sleeve bypass; additionally the novel technique can preserve biliopancreatic secretions, also it preserve anatomical external biliary pathway, by which ERCP can be performed if surgical obstructive jaundice develops early or late after the bariatric procedure [69-71].

Anatomical, surgical and physiological idea behind the novel Elbanna procedure is to preserve the gastrointestinal anatomy as far as we can, where most of the digestive enzymes, HCl, hormones and intrinsic factors are secreted. Absorption of digested amino acids & biliopancreatic enzymes essential for digestion of protein and fats to extract vitamins, vitamins and minerals occur in the preserved segments, at 50 cm from the duodenojejunal flexure we transect the jejunum. Re-anastomosis is performed between the proximal jejunum and the terminal ileum 100 cm from the ileocecal valve. Duodenum, Proximal 50 cm of jejunum and 100 cm of terminal help the physiological absorption. Preservation of the anatomical biliary drainage and enterohepatic circulation are the most procedural advantage. Fundal resection performed to get maximum effect on appetite and satiety.

In this case report of female child 12 years old presented with complicated sever obesity; BMI (44.8), in the form of Perth’s disease accompanied with depression and amenorrhea, modified Elbanna bypass operation performed after ethical consideration and family agreement, the child discharged in the day 4 after operation in accepted general condition, she recovered from depression 2 months after operation, menstruation occurred 4 months post operatively. 10 months after then her BMI became (29) with accepted clinical, lab and sonographic criteria.

CONCLUSION
In conclusion, we strongly believe that Bariatric By-pass surgery could be considered in complicated childhood patients who failed all other medical therapies, additionally depression, and psychosocial disorders should be considered in obese children in many circumstances not to affect their coming future. However, we are in need for international guidelines for such issue with many medical, social and ethical debates.

REFERENCES

Appendix

Novel Elbanna Operation.
We preserve Duodenum, 50 Cm of Proximal Jejunum and 100 Cm of the ileum to maintain physiological digestion and absorption, additionally preserve the enterohepatic circulation.