INTRODUCTION

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders due to deficiency of one of the five enzymes required for synthesis of cortisol in the adrenal cortex (Fig. 1). The enzymes involved are 21-α-hydroxylase, 11-β-hydroxylase, 17-hydroxylase, 3β-hydroxysteroid dehydrogenase, and 20,22desmolase. The most common enzyme defect is 21-hydroxylase that accounts for almost 90% of cases. The fundamental defect in CAH is the inability to synthesize cortisol adequately. Inefficient cortisol synthesis signals the hypothalamus and pituitary to increase corticotrophin releasing hormone (CRH) and adrenocorticotrophin hormone (ACTH). As a result, the adrenals become hyperplastic and produce an excess amount of sex hormone precursors, which do not require 21-hydroxylase for their synthesis. These precursors, progesterone and 17 hydroxyprogesterone, are further metabolized to active androgens, testosterone, and dihydrotestosterone, and to a lesser extent oestrogens-oestrone and oestradiol. The effect is prenatatal virilization of girls and rapid somatic growth with early epiphyseal fusion in both genders the so called “simple virilization”. This can be associated with a life-threatening hyponatremic dehydration and hyperkalaemia and are called “salt-wasters” (Fig. 2) [1-13]. A mild non-classical forms (late onset) occurs with partial enzyme deficiency. The females usually present late in life with signs of androgen excess and without neonatal genital ambiguity. Clinical features in childhood may include precocious puberty and may present as an adultmay be presented with hirsutism, menstrual irregularity, infertility and acne. Some patients remain asymptomatic. They may present as well with precocious sexual development. The 21-hydroxylase gene CYP21 is located on the short arm of chromosome 6. A pseudo-gene CYP21 p is located downstream close to CYP21. Diseases resulting from mutations are due to CYP21 p acquiring portions of CYP 21. Many mutations causing disease have been reported [14, 15].
This report highlights and discusses the deficiency of steroid 21-α-hydroxylase congenital adrenal hyperplasia in Saudi Arabia.

METHODOLOGY

In Saudi Arabia, there is no unified referral system and more than hundred qualified pediatric endocrinologist work across the country. Currently, there is no disease registry, however, limited studies, and the clinical experience indicated that the disease is quite prevalent.

During the period January 1989 to December 2014, 103 (95 Saudi and 8 non-Saudi) children were diagnosed to have congenital adrenal hyperplasia at the main author – NJ – Endocrine Pediatric Service of King Khalid University Hospital (KKUH), Riyadh, Saudi Arabia.

Diagnosis of CAH was suspected based on clinical grounds, and confirmed by detailed chromosomal, hormonal, and radiological investigations. Diagnosis of 21-hydroxylase deficiency was confirmed hormonally by high plasma concentration of 17-hydroxyprogesterone.

The salt-wasting was confirmed by the presence of hyponatremia, hyperkalemia, natriuria with high serum renin activity and low serum aldosterone concentration. All hormones were measured commercially by Biocentia Laboratory, Germany. Chromosomal analysis, abdominal ultrasound, genitography or magnetic resonance imaging (MRI) were performed when appropriate [16-19]. Data were retrospectively reviewed.

RESULTS

There were 76 (80%) patients with congenital adrenal hyperplasia due to 21-α-hydroxylase deficiency, among the 95 Saudi patients. They were 34 males and 42 females patients aged ranged between newborn to 13 years. Salt-wasting was the associated
Clinical characteristic presented in 71 (93.4%) patients (Table 1). All patients were having elevated serum 17-hydroxy progesterone (Table 2). There were 42 neonatal or infant deaths among our patients. No genetic studies were done in our patients. Four of the 46 XX patients were initially assigned male sex, which were later reassigned females. One patient with simple virilization conceived successfully and delivered by caesarean section. Seven of 11 female patients had irregular menses and discovered to have polycystic ovaries and excess androgens. Four of the six male patients tested showed testicular adrenal rest tumours by ultrasound with slight elevation of androstenedione.

<table>
<thead>
<tr>
<th>Genetic sex and number</th>
<th>Ambiguous genitalia</th>
<th>Precocious baby</th>
<th>Salt-wasting</th>
<th>Sex of rearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male = 34</td>
<td>-</td>
<td>2</td>
<td>32</td>
<td>M = 38</td>
</tr>
<tr>
<td>Female = 42</td>
<td>38</td>
<td>4</td>
<td>39</td>
<td>F = 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UD = 12</td>
</tr>
</tbody>
</table>

M = Male, F = Female, UD = Undetermined sex

<table>
<thead>
<tr>
<th>Normal range</th>
<th>ACTH 5-18 Pmol/L</th>
<th>Cortisol 150-685 nmol/L</th>
<th>17-OH progesterone 0.6 – 4.2 nmol/L</th>
<th>Testosterone 0.1-0.4 nmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (range)</td>
<td>41.7 (9-102)</td>
<td>112 (60-250)</td>
<td>194 (44-920)</td>
<td>1.43 (0.2-2.3)</td>
</tr>
</tbody>
</table>

ACTH – Adrenocorticotropic hormone

* 71 patients were salt-waster with low aldosterone and high plasma renin activity

DISCUSSION

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is an autosomal recessive disorder found in about 1 in 15,000 live births. The exact prevalence in Saudi Arabia is unknown, however, there is an impression fostered by the clinical experience and the limited hospital based studies that it is not a rare disorder. [15, 20-25]. The calculated incidence of the disease was estimated to be 1 in 5,000 live births [21]. The recently introduced universal screening for CAH reported an incidence of one in 6,400 live births [26]. Neonatal screening programmes are well-established worldwide [27-30]. No genetic studies were done in this series, however, it was shown by Mohamed et al. [15] in another series from the eastern region of Saudi Arabia the pattern of CYP 21A2 gene mutations.

Virilizing CAH is the most common cause of genital ambiguity, and 90-95% of CAH cases are caused by 21-hydroxylase deficiency. Diagnosis of CAH due to 21-hydroxylase deficiency is usually established by elevated serum 17-hydroxyprogesterone (17-OHP) [31].

Al Awan et al. [32] demonstrated the clinical ability of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia, as well as others [33-34].

Newborn males with 21-hydroxylase usually show increased phallus size, pigmented scrotum and bilateral testes or even passed unnoticed and present with neonatal death [35]. This could explain the predominance of females affected in our series. Newborn females with classic virilizing CAH, manifest variable degrees of genital ambiguity that is caused by high systemic level of adrenal androgens.

Medical treatment of CAH in childhood consists of replacement with oral hydrocortisone usually administered as 10-15 mg/m²/day in 2-3 divided doses (Alternatively drugs such as prednisone and dexamethasone used in adults). However, a stress dose must be given during surgery or severe acute illness. These drugs serve to suppress ACTH and thereby control excess adrenal androgen synthesis. Salt-wasting patients also require sodium chloride and mineralocorticoid replacement. The Florinef (9αFF) is often administered orally in a dose of 50-200 mg/day accompanied by 1-2 grams of sodium chloride [5-7, 10, 36-38].

Surgical correction is a complex clinical situation that requires a multi-disciplinary approach. The type of surgical repair performed must be tailored according to each individual patient’s anatomy [39-44]. Reconstruction is generally initiated between the age of 3 and 6 months.

Severely virilized patients may initially be assigned as males, as in this series, and once such assignment has been male, it may be difficult to reverse. Among (46 XX) congenital adrenal hyperplasia patient,
due to 21 hydroxylase deficiency patients, four were raised wrongly as males, none of them, refused sex-re-assignment. A multi-disciplinary team consisting of a pediatric endocrinologist, pediatric surgeon or urologist, plastic surgeon, geneticist, and a psychologist should collaborate in managing such patients. The issue should be discussed clearly and openly with patients and should be raised as female as they could have high fertility rate [16-18].

Fertility in females with congenital adrenal hyperplasia due to 21 hydroxylase deficiency reduced especially in classic salt-waster. Several factors have been suggested such as androgen excess, secondary polycystic ovaries syndrome, and psycho-social factors. Adequate glucocorticoid therapy and improvement of surgical and psychosocial management could contribute to optimize fertility. Majority of our female patients have irregular menstrual cycles and polycystic ovaries, however, one with simple virilizing CAH, had successfully conceived with a good outcome [45-50]. However, fertility in males is poorly studied. While in one series showed normal fertility, others reported substantially reduced fertility [50-51].

Testicular adrenal rest tumours increase with age in CAH. The prevalence of these tumours is variable, ranging from 30 to 95% of patients depending on the selection of patients and methods of detection. Their impact on fertility has not yet completely established. Four of our six patients whom we studied demonstrated testicular adrenal rest tumours, (unpublished data) and indicated the poor control [52-56].

Prenatal diagnosis and treatment with oral dexamethasone given to the mother has been implemented for more than 25 years and was successful in ameliorating genital ambiguity in all pregnancies at 25% risk for classical CAH [57-66]. In utero gene-specific diagnosis guides the treatment of the affected female fetus. Finally, the future guidelines and strategic in the management of children with congenital adrenal hyperplasia could prevent the long-term consequences of the disease [67].

ACKNOWLEDGEMENT
The authors would like to thank Ms. Loida M. Sese for typing the manuscript, and extend their thanks and appreciations to Miss Hadeel Nasir Al Jurayyan from Princess NouraBintAbdulrahman University, Riyadh, Saudi Arabia for her help and technical support.

REFERENCES
34. Chambrier ED, Heinrichs C, Avni FE; Sonographic appearance of congenital adrenal hyperplasia in utero. J Ultrasound in Medicine, 2002; 21(1): 97-100.
46. Mulaiikal RM, Migeon CJ, Rock JA; Fertility rates in female patients with congenital adrenal