The exact solutions to the Klein-Gordon-Zakharov equation

Huiling Fan1*, Yanjun Cheng2, Yuanting Zhu1, Chen Tian1, Dongyan Dai1
1School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China
2Institute of technology, Daqing oilfield Fangxing company, Daqing 163000, China

*Corresponding author
Huiling Fan
Email: huilingnepu@126.com

Abstract: The complete discrimination system for polynomial method is applied to the Klein-Gordon-Zakharov equation to obtain the classification of the traveling wave solutions.

Keywords: traveling wave solution; complete discrimination system for polynomial method; the Klein-Gordon-Zakharov equation

INTRODUCTION
In this paper, we consider the Klein-Gordon-Zakharov equation[1].

\[\begin{align*}
u_{tt} - u_{xx} + u + cuu &= 0, \\
n_{tt} - n_{xx} &= \beta\|u\|^2,
\end{align*} \]

(1)

This system describes the interaction of the Langmuir wave and the ion acoustic wave in a high-frequency plasma. We use the complete discrimination system for polynomial method to Eq.(1) and give the classification of its all single traveling wave solutions. The complete discrimination system for polynomial method was proposed by Liu[2-4] in the past several years. By Liu's method, many nonlinear partial differential equations[5-7] have been solved.

CLASSIFICATION
Taking the following transformation to the Eq.(1)

\[u = u(\xi), \quad n = n(\xi), \quad \xi = x - ct, \]

(2)

then we can get the following equations

\[\begin{align*}
c^2u_{xx} - u_{x} + u + cuu &= 0, \\
c^2n_{xx} - n_{x} &= \beta\|u\|^2,
\end{align*} \]

(3)

Integrating Eq.(3), we have

\[u^* = \frac{1}{(c^2 - 1)^2} \left[-2\beta u^3 - 2c_1 u^2 - (2c_2 - c^2 + 1)u \right], \]

(4)

and

\[n = \frac{\beta u^2 + c_1 u + c_2}{c^2 - 1}. \]

(5)

Integrating Eq.(4), we get

\[\left(u^* \right)^2 = a_4 u^4 + a_3 u^3 + a_2 u^2 + a_1, \]

(6)

where

\[a_4 = -\frac{\beta}{2(c^2 - 1)^2}, \quad a_3 = -\frac{2c_1}{3(c^2 - 1)^2}, \quad a_2 = \frac{c^2 - c_2 - 1}{2(c^2 - 1)^2}, \quad a_1, \quad c_1, \quad c_2 \]

are integration constants.

When \(a_4 > 0 \), we take the transformation

\[w = \left(a_4 \right)^{\frac{1}{4}} \left(u + \frac{a_1}{4a_4} \right), \quad \xi_1 = (a_4)^{\frac{1}{2}} \xi. \]

(7)
Eq. (6) becomes

$$w_{2n}^2 = w^4 + pw^2 + qw + r,$$

where

$$p = \frac{a_2}{\sqrt{a_4}}, \quad q = \left(\frac{a_3}{8a_4} - \frac{a_2a_3}{2a_4} \right) a_4^{\frac{1}{2}}, \quad r = \frac{-3a_4^3}{256a_4^3} + \frac{a_2a_3^2}{16a_4^3} + a_0. \tag{8}$$

When $a_4 < 0$, we take the transformation $w = \left(-a_4 \right)^{\frac{1}{2}} \left(u + \frac{a_3}{4a_4} \right)$, $\xi = \left(-a_4 \right)^{-\frac{1}{2}} \xi$. Then, Eq. (6) becomes

$$w_{2n}^2 = \left(w^4 + pw^2 + qw + r \right), \tag{9}$$

where

$$p = \frac{-a_2}{\sqrt{-a_4}}, \quad q = \left(\frac{-a_3}{8a_4} + \frac{a_2a_3}{2a_4} \right) a_4^{\frac{1}{2}}, \quad r = \frac{3a_4^3}{256a_4^3} - \frac{a_2a_3^2}{16a_4^3} - a_0. \tag{10}$$

Then Eq. (8) and Eq. (10) become

$$w_{2n}^2 = \varepsilon \left(w^4 + pw^2 + qw + r \right), \tag{11}$$

where $\varepsilon = \pm 1$.

Integrating Eq. (10) yields

$$\pm (\xi - \xi_0) = \int \frac{dw}{\varepsilon F(w)}, \tag{12}$$

where $F(w) = w^4 + pw^2 + qw + r$.

Write the discrimination of $F(w)$ as follows

$$\begin{align*}
D_1 &= 4 \\
D_2 &= -p \\
D_3 &= -2p^3 + 8pr - 9q^2 \\
D_4 &= -p^3q^2 + 4p^4r + 36pq^2r - 32p^2r^2 - 27q^4 + 64r^3 \\
D_5 &= 9p^2 - 32pq
\end{align*} \tag{13}$$

According to the discrimination, we give the corresponding traveling wave solutions to Eq. (12).

Case 2.1: $D_4 = 0$, $D_3 = 0$, $D_2 < 0$. we have $F(w) = \left[(w - l)^2 + s^2 \right]^2$, where l, s are real numbers, $s > 0$.

When $\varepsilon = 1$, the corresponding traveling wave solutions of Eq. (12) are

$$w = s \tan \left[s \left(\xi - \xi_0 \right) \right] + l \tag{14}$$

Case 2.2: $D_4 = 0$, $D_3 = 0$, $D_2 = 0$. When $\varepsilon = 1$, we assume $F(w) = w^4$, the corresponding traveling wave solutions of Eq. (12) are

$$w = -\left(\xi - \xi_0 \right)^{-1} \tag{15}$$

Case 2.3: $D_4 = 0$, $D_3 = 0$, $D_2 > 0$, $E_2 = 0$. We assume $F(w) = (w - \alpha)^2(w - \beta)^2$, where α, β are real numbers, $\alpha > \beta$. If $\varepsilon = 1$, when $w > \alpha$ or $w < \beta$, the corresponding traveling wave solutions of Eq. (12) are

$$w = \beta - \alpha \left[\coth \left(\frac{(\alpha - \beta)(\xi - \xi_0)}{2} \right) - 1 \right] + \beta \tag{16}$$

when $\beta < w < \alpha$, the corresponding traveling wave solutions of Eq. (12) are

$$w = \frac{\beta - \alpha}{2} \left[\tanh \left(\frac{(\alpha - \beta)(\xi - \xi_0)}{2} \right) - 1 \right] + \beta \tag{17}$$

Case 2.4: $D_4 = 0$, $D_3 > 0$, $D_2 > 0$. We assume $F(w) = (w - \alpha)^2(w - \beta)(w - \gamma)$, $\beta > \gamma$

If $\varepsilon = 1$, when $\alpha > \beta, w > \beta$, or $\alpha < \gamma, w < \gamma$, the corresponding traveling wave solutions of Eq. (12) are

$$\pm \left(\xi - \xi_0 \right) = \frac{1}{(\alpha - \beta)(\alpha - \gamma)} \ln \left[\frac{\sqrt{(w - \beta)(\alpha - \gamma)} - \sqrt{(\alpha - \beta)(w - \gamma)}}{w - \alpha} \right]; \tag{18}$$
When \(\alpha > \beta \), \(w < \gamma \), or \(\alpha < \gamma \), \(w < \beta \), the corresponding traveling wave solutions of Eq.(12) are
\[
\pm \left(\xi - \xi_0 \right) = \frac{1}{\alpha - \beta} \ln \left[\frac{\sqrt{(w - \beta)(\gamma - \alpha)} - \sqrt{(\beta - \alpha)(w - \gamma)}}{w - \alpha} \right];
\] (19)

When \(\gamma < \alpha < \beta \), the corresponding traveling wave solutions of Eq.(12) are
\[
\pm \left(\xi - \xi_0 \right) = \frac{1}{\alpha - \beta} \arcsin \left[\frac{(w - \beta)(\gamma - \alpha) - (\beta - \alpha)(w - \gamma)}{(w - \alpha)(\beta - \gamma)} \right];
\] (20)

If \(\varepsilon = -1 \), when \(\alpha > \beta \), \(w > \beta \), or \(\alpha < \gamma \), \(w < \gamma \), the corresponding traveling wave solutions of Eq.(12) are
\[
\pm \left(\xi - \xi_0 \right) = \frac{1}{\alpha - \beta} \ln \left[\frac{\sqrt{(-w + \beta)(\gamma - \alpha)} - \sqrt{(\beta - \alpha)(w - \gamma)}}{w - \alpha} \right];
\] (21)

When \(\alpha > \beta \), \(w < \gamma \), or \(\alpha < \gamma \), \(w < \beta \), the corresponding traveling wave solutions of Eq.(12) are
\[
\pm \left(\xi - \xi_0 \right) = \frac{1}{\alpha - \beta} \ln \left[\frac{\sqrt{(-w + \beta)(\gamma - \alpha)} - \sqrt{(\beta - \alpha)(w - \gamma)}}{w - \alpha} \right];
\] (22)

When \(\gamma < \alpha < \beta \), the corresponding traveling wave solutions of Eq.(12) are
\[
\pm \left(\xi - \xi_0 \right) = \frac{1}{\alpha - \beta} \arcsin \left[\frac{-w + \beta(\gamma - \alpha) + (\beta - \alpha)(w - \gamma)}{(w - \alpha)(\beta - \gamma)} \right].
\] (23)

Case 2.5: \(D_4 = 0, D_3 = 0, D_2 > 0, E_2 = 0 \). We assume \(F(w) = (w - \alpha)^3(w - \beta) \), where \(\alpha, \beta \) are real numbers. If \(\varepsilon = 1 \), when \(w > \alpha, w > \beta \), or \(w < \alpha, w < \beta \), the corresponding traveling wave solutions of Eq.(12) are
\[
w = \frac{4(\alpha - \beta)}{\beta - \alpha} + \xi;
\] (24)

If \(\varepsilon = 1 \), when \(w > \alpha, w < \beta \), or \(w < \alpha, w > \beta \), the corresponding traveling wave solutions of Eq.(12) are
\[
w = \frac{4(\alpha - \beta)}{\beta - \alpha} + \xi.
\] (25)

Case 2.6: \(D_4 = 0, D_2D_3 < 0 \). We have \(F(w) = (w - \alpha)^3[(w - \gamma)^2 + s^2] \), where \(\alpha \) is a real number. If \(\varepsilon = 1 \), the corresponding traveling wave solutions of Eq.(12) are
\[
w = \frac{\left(e^{\sqrt{(\alpha - \gamma)^2 + s^2}}(\xi - \xi_0) - \frac{\alpha - 2l}{\sqrt{(\alpha - \gamma)^2 + s^2}} \right) \cdot \frac{\alpha - 2l}{\sqrt{(\alpha - \gamma)^2 + s^2}}}{\left(e^{\sqrt{(\alpha - \gamma)^2 + s^2}}(\xi - \xi_0) - \frac{\alpha - 2l}{\sqrt{(\alpha - \gamma)^2 + s^2}} \right)^2 - 1};
\] (26)

Case 2.7: \(D_4 > 0, D_3 > 0, D_2 > 0 \). We assume \(F(w) = (w - \alpha_1)(w - \alpha_2)(w - \alpha_3)(w - \alpha_4) \), where \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \) are real numbers, \(\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4 \).

Case 2.8: \(D_4 < 0, D_2D_3 \geq 0 \). We assume \(F(w) = (w - \alpha)(w - \beta)[(w - \gamma)^2 + s^2] \), where \(\alpha > \beta, l, s > 0 \), and they are all real numbers.

Case 2.9: \(D_4 > 0, D_2D_3 \leq 0 \). We assume \(F(w) = [(w - l_1)^2 + s_1^2][(w - l_2)^2 + s_2^2] \), where \(\alpha_1, \alpha_2, l_1 \) and \(s_1 \) are real numbers, \(s_1 > s_2 > 0 \).

The corresponding traveling wave solutions of Eq.(12) in Case 2.7-Case 2.9 are the forms in Elliptic function, its form is compiles, we omit.
The solutions (14)-(26) are the classification of exact solutions to the Eq.(12), then by Eq.(5), Eq.(7) and Eq.(9), we can get the $u(x,t)$ and $v(x,t)$, they are the solutions of the Klein-Gordon-Zakharov equation.

CONCLUSION
In the present paper, we use the complete discrimination system for polynomial method to the Klein-Gordon-Zakharov equation, and we obtain the classification of envelop traveling wave solutions. These solutions contain trigonometric functions, rational functions, solitary wave solutions and so on.

Acknowledgement
The project is supported by Scientific Research Fund of Education Department of Heilongjiang Province of China under Grant No.12531475.

REFERENCE
4. Liu CS; The exact solutions to lieanrd equation with high-order nonlinear term and applications. Fizika A, 2009; 1:29-44.