Propolis: A Boon of Nature– An Overview

Atul Jain1, D. Deepti2*, Shweta Sonkusre3, Ashmita Singh4, Tejas Taunk5, Prachi Sood6

1Professor and Head, Department of Conservative Dentistry and Endodontics, Rungta College of Dental Sciences and Research, Bhilai, CG, India
2, 3MDS student (Final Year), Department of Conservative Dentistry and Endodontics, Rungta College of Dental Sciences and Research, Bhilai, CG, India
4Reader, Department of Conservative Dentistry and Endodontics, Rungta College of Dental Sciences and Research, Bhilai, CG, India
5Senior Lecturer, Department of Conservative Dentistry and Endodontics, Rungta College of Dental Sciences and Research, Bhilai, CG, India
6MDS student (Final Year), Department of Prosthodontics, Rungta College of Dental Sciences and Research, Bhilai, CG, India

*Corresponding author
Dr. D. Deepti
Email: deepitisadasivuni@gmail.com

Abstract: Propolis is one of the ancient natural product used in traditional medicine. Although its advantages were certain, it came into light recently since 30 years in dentistry. It showed many antimicrobial, anti inflammatory and antioxidant properties with multiple uses in various areas of dentistry. It is effective even on the most resistant micro organisms like Enterococcus faecalis and Candida albicans. It has a very good healing capacity as well as the ability to maintain the viability of cells. Its complete potential is still being discovered. To uncover the hidden secrets of propolis, its detailed knowledge is mandatory. This article aims to provide a complete overview about propolis and its potential uses in general and in dentistry.

Keywords: Propolis, Enterococcus faecalis, Candida albicans

INTRODUCTION

Recently, focus has shifted towards herbal products which were known for their antimicrobial effect since ages in traditional medicines. Honey bee products like honey and propolis were used recently as antimicrobials [1]. Amongst them, Propolis is renowned for its antimicrobial activity and being used for various purposes in dentistry.

Propolis is derived from the Greek word “pro” before, polis “city” or defender of the city. It is proved to be a less irritating solution [2] and very effective in eliminating E. faecalis [3, 4]. It is used to treat different diseases and inflammatory conditions and can be applied both locally and systemically.

ORIGIN

Propolis is a natural flavinoid rich resinous product of honey bees, known for its antimicrobial, antioxidant and anti inflammatory action [5]. It is a sticky and gummy product derived from a honey bee, Apis mellifera that gets accumulated in the hives and used for building and insulating material. It is used to reinforce coombs and acts as an aseptic material. Bees collect propolis from buds and cracks from various trees in northern hemisphere. The trees which produce propolis are: Populus spp., Betula spp., Ulmus spp., Quercus spp., Salix spp., Aesculus hippocastanum L., Picea spp., Fraxinus spp, etc. The varied composition and properties of propolis are due to these trees [6].

Propolis is available in different parts of the world in different forms as capsules, lozenges, tincture and cream in Europe and America. It is also available as toothpaste and further research is being carried out at Oxford University to unveil the miracles of Propolis.

Propolis was used even at the ancient days of Egyptian and Greek civilizations. The Greeks were the first to recognize its healing powers. Hippocrates, the founder of modern medicine, used it for healing sores and ulcers. The Roman historian Pliny was quoted that “current physicians use propolis as a medicine because it extracts stings and all substances embedded in flesh, reduces swelling, softens indurations, soothes pain of sinews and heals sores when it appears hopeless for them to mend.” [7].
COMPOSITION
Propolis is a very complex mixture and, in general, it is composed of 50% balsams and resins, 30% wax, 10% essential oils, 5% pollen and 5% of other substances like sugars, vitamins etc., 5% organic compound and minerals. The main chemical elements present in propolis are amino acids and flavanoids including flavones, flavonols and flavanones; terpenes; vanillin; tectochrysin; isalpinin pinocembrin chrysin galangen; ferulic acid; caffeic acid; caffeic acid phenethyl ester; cinnamic acid and cinnamyl alcohol., phenolics, and various aromatic compounds [8]. The composition again varies on the different geographic and the environmental conditions. Among all the varities, Brazilian propolis is well known for its high biologic activity [6].

PROPERTIES
Propolis is available naturally in the form of a wax-like resin. Its melting point is usually 60° - 70°C and sometimes as high as 100°C [6].

It is known for its biological properties, including antibacterial, antifungal and healing properties. It consists of highly active bioflavenoid which has antimicrobial, antioxidant and anti-inflammatory properties.

Antibacterial Property
Propolis was found to be effective against both gram positive bacteria [9] especially against Staphylococcus aureus [10] and against gram negative bacteria against Salmonella [11]. The effect of propolis on growth and glucosyltransferase activity of Streptococcus sorbinus, Streptococcus mutans and Streptococcus circuits was observed in vitro and in vivo [12] and found that the insoluble gycan synthesis and glucosyltransferase activity were inhibited by multiple actions of Propolis. Koru et al., 2007 studied the antibacterial action against certain anaerobic oral pathogens and found to be very effective against Peptostreptococcus anaerobius, Lactobacillus acidophilus, Actinomyces naeslundii, Prevotella oralis, Prevotella melaninogena, Porphyromonas gingivalis, Fusobacterium nucleatum and Veillonella parvula. They finally concluded that the antibacterial property of Propolis was due to the presence of Flavonoids and aromatic compounds such as caffeic acid [5, 13].

Anti inflammatory Property
Anti-inflammatory property of propolis is due to the presence of caffeic acid phenethyl ester (CAPE) in propolis [5, 14].

Anti Oxidant Property
The anti oxidant property of propolis is attributed to its radical scavenging ability which was better than that of vitamin C. They also demonstrated the ability of increasing amounts of Ethanolic Extract of Propolis to inhibit luminol H2O2; chemiluminescence in vitro, and suggested that its anti-oxidative capacity was partly due to its high content of flavenoids [5, 15].

Anti fungal Property
Propolis and nine anti-fungal drugs were tested over four different infection causing fungi. It was concluded that propolis was equal or more effective than other preparations against three of the fungi, and in some tests, its activity was enhanced in the presence of propylene glycol. Propolis and propylene glycol together gave better results against Scopulariopsis brevicaulis than any of the drugs tested [16].

Antiviral Property
One of the constituent fraction of Propolis, isopentyl ferculate, inhibited the infectious activity of influenza virus A/HongKong in vitro and the production of hemalutins in vivo significantly [7].

POTENTIAL USES OF PROPOLIS
In General Dentistry
Wound Healing
Magro-Filho and Carvalho in 1994 used propolis mouthrinse as well as topical application during a sulculoplasty technique and stated that hydroalcoholic mixture of Propolis helped in epithelial repair but had no effect on the wound healing when examined histologically [38].

As a Mouth Rinse
Propolis is effective against Streptococcus mutans, which is a well known contributor for tooth decay. Propolis showed considerable activity against bacteria and yeast associated with dental cavities, gingival and periodontal disease in test tube [17, 18], but one human study showed that propolis was no better than a placebo in inhibiting dental plaque formation [19]. Koo et al. evaluated the efficacy of Propolis mouth rinse on plaque accumulation for 3 days and concluded that supra gingival plaque was effectively reduced due to this mouth rinse [20].

Propolis can also be used to treat canker sores. It is often called as a “natural antibiotic” and can be often used as an alternative to other chemical mouth rinses [21].

Storage Media
Ozan et al. in 2007 determined that 10% Propolis solution can be effectively used as a storage media for avulsed tooth by maintaining the viability of the periodontal ligament cells [22]. A study conducted by Mori GG et al. in 2010 concluded that propolis can be
used as a storage media with duration of 6 hour period rather than 60 min. [23].

Propolis was found to be a promising storage media due to greater viability of periodontal ligament cells [24, 25].

In the treatment of Periodontitis

Propolis was known to significantly reduce the periodontitis-related bone loss. A study conducted by Toker et al. in 2008 provided both morphologic and histologic evidence that propolis, when administered systemically, prevented alveolar bone loss in the rat model [26].

Hidaka et al. studied the effects of honeybee products on the in vitro formation of calcium phosphate precipitates and inhibitory effect on the rate of amorphous calcium phosphate transformation to hydroxyapatite and on the induction time. Propolis reduced the transformation of amorphous calcium phosphate to hydroxyapatite by 12 - 35% and with a 2.5 - to 4.4-fold increase in the induction time. These results suggested that propolis may have potential as anticalculus agents in toothpastes and mouthwashes [27].

Against Candida albicans

Its effect against C. albicans can be attributed to rapid (between 30 seconds and 15 minutes), dose-dependent cytocidal activity and an inhibitory effect on Yeast-Mycelial conversion. The hyphal length was reduced even at lower propolis concentration. Dose and time-dependent inhibition of phospholipase activity was also an additional feature. Although, no clear effect was shown on adherence to buccal epithelial cells and surface structure hydrophobicity, but damage to the plasma membrane structure was confirmed [28]. Patients having full dentures who used hydroalcoholic propolis extract showed a decrease in the number of Candida [29].

Against Caries

Several investigations carried out with crude propolis extracts, its isolated fractions, and purified compounds showed Streptococcus mutans count reduction which was attributed to the interference with their adhesion capacity and glucosyltransferase activity, which are the main factors in carrying out the caries process. Propolis can be used as an effective cariostatic agent [30].

In Dentin Hypersensitivity

Propolis was found to be a promising desensitizing agent. Flavanoids present in propolis might be able to suppress the information of free radicals by binding heavy metals in ions which are known to catalyze many processes leading to the appearance of full radicals. Propolis is known to be an antioxidant, antimicrobial, anti-inflammatory, immunostimulatory, and heavy metal chelating agent. It also has an effect on tissue regeneration [31]. It mainly acts by obliterating the dentinal tubules and also simulates reparative dentin formation thus, reducing the hypersensitivity [32].

A study evaluated the clinical efficiency of CPP-ACP F, sodium fluoride, propolis, and distilled water that was used as placebo in treating dentinal hypersensitivity and concluded that propolis was most efficient amongst all in treating dentinal hypersensitivity and CPP- ACPF showed to be the least efficient [33].

As a Pulp Capping Agent

It was suggested that flavonoids from propolis may stimulate reparative dentine formation and may delay pulp inflammation by stimulating production of transforming growth factor (TGF)-β1 and synthesis of collagen by dental pulp cells [3]. It also induces the production of high quality tubular dentin [34].

In Endodontics

As a Root Canal Irritant

Propolis was stated effective in dentinal tubule disinfection against Enterococcus faecalis. It produced 66% and 70% inhibition of E. faecalis at an intra canal dentinal tubular depth if 200µ and 400µ [35]. So, still more studies are required to substantiate its clinical efficacy as an irrigant.

The antibacterial property of Propolis is due to the presence of flavanoids and aromatic compounds such as cafeic acid [5].

As an Intracanal Medicaments

Propolis was found to be more effective than calcium hydroxide as an intracanal medicament against E. faecalis and its effectiveness is not weakened by dentine [3]. It can be used as a promising intracanal medicament but when compared with Chlorhexidine, it was found equally effective for Enterococcus faecalis and less effective on Candida albicans [36, 37].

Biocompatibility and Allergic reactions

Prior to clinical usage, complete knowledge of the biocompatibility should be present. Garcia et al conducted a study to confirm the biocompatibility of propolis by inducing it in subcutaneous tissue of rats and concluded that propolis with Copaiba oil vehicle showed beneficial biological properties.

However people allergic to propolis can develop rashes, itching, edema and cracking of skin. It may also irritate the skin when applied and can cause eczema, lesions, psoriasis or mouth sores.

Asthmatic patients and Pregnant women should not be advised the usage of propolis. If the patient is allergic to black poplar (also populas nigra), pollen, bee stings, honey and balsam of Peru, he/she should avoid propolis as well. It can be evidenced as most of the
CONCLUSION
Among the recent herbal products used in dentistry, propolis is booming rapidly due to its antimicrobial, anti-inflammatory and biocompatible property. But, still more studies are required to confirm its advantages and success in human beings.

REFERENCES

