Research Article

Study of Vitamin B$_{12}$ level in Coronary heart disease (CHD) Patients and Compare with Normal Healthy Subjects

Sharma Hemlata1, Vyas Shalini 2, Dr. Vyas R.K.3, Dr. Chhaparwal Amit4, Chawla kim5, Dr. Gora Meenakshy6

1M.Sc.(medicine) Biochemistry, Biochemist, Department of Biochemistry, S.P. Medical College, Bikaner.
2PhD Biochemistry, professor & head, Department of Biochemistry, S.P. Medical College,Bikaner.
3M.D.S.,Assistant Professor, Geetanjali dental research institute, Geetanjali medical college, Udaipur.
4M.Sc.(medicine) Biochemistry, Senior demonstrator, Department of Biochemistry, S.P. Medical College, Bikaner.
5M.D.Biochemistry, Assistant Professor ,Department of Biochemistry,. S.P.Medical College, Bikaner

*Corresponding author
Hemlata Sharma
Email: hemlaas212@gmail.com

Abstract: This study was conducted on 50 patient of coronary heart disease and 50 persons are healthy subjects between the age group 25-70 years of both sex. Coronary heart disease develops through narrowing of the coronary arteries which leads to death of portion of the heart muscle because of blood flow that oxygen nutrition supply, and leads to Heart attack. The WHO has drawn attention to the fact that coronary heart disease (CHD) is our modern epidemic, not an unavoidable attribute of aging. It is estimated that if incidence of CHD is brought to zero it would increase the life expectancy by 3 to 9%.Serum vitamin B$_{12}$ were measured by HPLC grade kit with the help of HPLC. Serum vitamin B$_{12}$ of coronary heart disease patients showed a highly significant (p<0.0001) relationship. Estimation of serum vitamin B$_{12}$ is reliable, economic and sensitive and it can be used in proper management of chronic complications of coronary heart disease.

Keywords: Coronary heart disease, vitamin B$_{12}$,HPLC, atherosclerosis

INTRODUCTION

Coronary heart disease has been defined as Impairment of heart function due to inadequate blood flow to the heart compared to its needs, caused by obstructive changes in the coronary circulation to the heart [1]. Complete occlusion of coronary artery may be produced in a variety of ways:

1. Atherosclerotic narrowing of the vessel with complete obstruction of the lumen.
2. Thrombosis in an already atheromatous artery.
3. Hemorrhage into an atheromatous plaque.
4. Rupture of such a plaque into the lumen.

Patients of Ischemic heart disease are known to have hypercoagulability of the blood. Raw causes are syphilitic aortic sealing the mouth of the coronary artery and an embolus from a vegetation on the aortic value. Atherosclerosis is more common in coronaryaries than other vessels of similar size. With every systole and diastole there is a change in length of coronaries. To meet this stress we find intimal supports of longitudinal muscle lying in matrix of connective tissue. These supports are more developed in males than in females, and, they are site of lipid accumulation and they have been blamed for bad name, which coronary arteries enjoy.

Vitamin B$_{12}$ was inversely correlated with inflammatory markers (high-sensitivity C-reactive protein and interleukin-6) directly related to insulin resistance [2]. Vitamin B$_{12}$ deficiency may cause neurological symptos such as, impaired vibration sense, neuropsychiatric disturbances including depression, confusion and cognitive impairment, even in the absence of anaemia (Symptoms in the elderly are more often non-specific like tiredness or malaise[3].

MATERIAL & METHODS

The present study was conducted on 50 patients of coronary heart disease of HRMC, S.P.Medical college,Bikaner and 50 persons are healthy subjects between the age group 25-70 years of both sexes.

Determination of Serum vitamin B$_{12}$

Detection was performed with a photodiode array detector monitoring the eluent 230 nm for vitamin B$_{12}$. Identification of resolved peaks in real samples was executed by comparing their spectra with those derived from aqueous standard solutions.For the determination of vitamin B$_{12}$ the sample is reduced and
derivated in one step. HPLC injection the values of different parameter in different subjects were obtained with the help of uv detector.

RESULTS

The serum cobalamine (vit. B$_{12}$) concentration was found to be 214.52 ± 127.21 pg/ml with a range of

83.84 to 369.00 pg/ml in CHD subjects. The decreased level of vit. B$_{12}$ was statistically significant as compared to control subjects with 276.12 ± 121.92 pg/ml; while it ranged from 136.25-468.00 pg/ml as it evident by P-value.

Table-1: Serum Vitamin B$_{12}$ concentration (pg/ml) in CHD subjects with that of control.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Values</th>
<th>Control group</th>
<th>CHD group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean</td>
<td>276.12</td>
<td>214.52</td>
</tr>
<tr>
<td>2</td>
<td>Range</td>
<td>136.25 - 468.00</td>
<td>83.84 - 369.00</td>
</tr>
<tr>
<td>3</td>
<td>SD</td>
<td>121.92</td>
<td>127.21</td>
</tr>
<tr>
<td>4</td>
<td>SE</td>
<td>17.24</td>
<td>17.99</td>
</tr>
<tr>
<td>5</td>
<td>DF</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>t</td>
<td>2.472</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P-value</td>
<td>0.015*</td>
<td></td>
</tr>
</tbody>
</table>

* Significant

Df = Degree of Freedom

DISCUSSION AND CONCLUSION

The values of vit. B$_{12}$ are in close to resembled with findings of Friso et al [4]. The statistically significant decreased in serum vit. B$_{12}$ level in CHD patients might be due to that higher blood homocysticline level appear to be associated with higher risk of coronary cerebral and peripheral vascular disease are inversely related to blood levels of folate and of vit.B$_{12}$ and vit. B$_{6}$. Vitamin B$_{12}$ would be expected to reduce homocysteine levels and reduces the risk of vascular disease reported by Ishihara et al [5].

The values of serum vit. B$_{12}$ obtained in the present series of study in CHD patients were in close agreement with the findings of Gopinath et al[6].

REFERENCES