Research Article

Synthesis, Characterization and Evaluation of Anticonvulsant activity of some Novel 4-Thiazolidinone Derivatives

Asish Bhaumik1, M. Ashok Chandra1, Shubhankar Saha2, Juturu Mastanaiah2, Telu Visalakshi2

1Teja College of Pharmacy, Department of Pharmaceutical Chemistry & Pharmaceutical Analysis, Kodad, Nalgonda (Dist.-508206, Andhra Pradesh, India
2GATE School of Pharmacy, Department of Pharmacology & Pharmaceutical Analysis, Kodad, Nalgonda (Dist.-508206, Andhra Pradesh, India

*Corresponding author
Asish Bhaumik
Email: bhaumik.asish@gmail.com

Abstract: The objective of the present work is the synthesis of N-[2-(4-substituted phenyl)-4-oxo-1,3-thiazolidine-3-yl]-2-(naphthalene-2-yloxy)acetamide and evaluation of anticonvulsant activity. Based on this a new series of compound have been planned to synthesize by reacting β-naphthol, ethyl chloroacetate, hydrazinemonohydrate, ethyl alcohol and various aromatic aldehydes. The anticonvulsant activity of the test drugs were evaluated by using MES induced convulsions in mice. The percentage protection was estimated by observing the number of animals showing abolition of Hind Limb Tonic Extension (HLTE) or extension not greater than 90°. The synthetic derivatives (A9, A8, A2, A1 & A10) 200 mg/kg have shown 95.85%, 90.04%, 84.23%, 79.75% & 73.44% protection against MES induced seizure respectively.

Keywords: Anticonvulsant activity, HLTE, MES, Seizure, 4-Thiazolidinone Derivatives

INTRODUCTION

4-thiazolidinones are the derivatives of thiazolidine with a carbonyl group at the 4 position. Several methods for the synthesis are available. The synthesis of 2-amino 4-thiazolidinones-4-C has been reported by using thiourea and sodium salt of labeled monochloroacetic acid [1]. Another method of synthesis of 4-thiazolidinones is by using of thiocyanate, alkylthiocyanate with hydrazideacetamide followed by the treatment with ethylchloro or ethyl bromo acetate and sodium acetate [2].

The literature survey revealed that 4-thiazolidinone and their derivatives were possessed a wide range of pharmacological activities such as anti-inflammatory, analgesic, anticonvulsant, antimicrobial, local and spinal anesthetics, CNS stimulants, hypnotics, anti HIV, anti diabetic, anticancer, FSH receptor antagonist and CFTR inhibitor etc [3, 4].

The objective of the present work is the synthesis of N-[2-(4-substituted phenyl)-4-oxo-1,3-thiazolidine-3-yl]-2-(naphthalene-2-yloxy)acetamide and evaluation of anticonvulsant activity. Based on this a new series of compound have been planned to synthesize by reacting β-naphthol, ethyl chloroacetate, hydrazinemonohydrate, ethylalcohol and various aromatic aldehydes.

MATERIALS AND METHODS

The all chemicals used for the synthesis were of laboratory grade and analytical grade. The melting points of newly synthesized thiazolidinone derivatives were determined by open capillary method. The IR spectra of synthesized compounds were recorded by ABB Bomen FT-IR spectrometer MB 104 IR spectra recorder with KBr pellets. The H¹-NMR spectra of synthesized compounds were recorded by BRUKER NMR spectrometer in DMSO. The Mass spectra of synthesized compounds were recorded by JEOL GC mate. The purification of newly synthesized compounds were done by TLC method. TLC plates are pre-coated silica gel (HF254-200 mesh) aluminium plate using ethyl acetate & n-hexane as an solvent system and spots were visualized under U.V. chamber. The IR, H¹ – NMR and Mass spectra were assigned to elucidate the structure of synthesized compounds (A1 – A10).

Steps involved in the Synthesis of Compounds [5-7]

First step: Preparation of ethyl-2-naphthalene-6-yloxy acetate

2-naphthol (1.44 gm, 10 mmol), anhydrous potassium carbonate (1gm) and ethylchloro acetate (1.67gm, 10mmol) in 50ml of anhydrous acetone were refluxed on oil bath for 6 hours. The reaction mixture was
filtered and the excess solvent was removed by distillation under pressure.

Second step: Preparation of 2-(naphthalene-6-yloxy) acetohydrazide
The residue and 1gm hydrazine monohydrate (20 mmol) were dissolved in 50 ml of absolute ethanol and refluxed on a steam bath for 1 hour. The solute must was filtered and dried and recrystallized from ethanol.

Third step: Preparation of substituted benzaldehyde derivatives
0.01mol of substituted benzaldehyde and 0.01mol of substance and 2-3 drops of glacial acetic acid and 20ml of ethanol were taken in round bottom flask and reflux for 6 hours on water bath. After cooling add ice cold water to the mixture to give solid white mass. Filtered and dried. Recrystallized from chloroform-methanol mixture.

Fourth step: General method of synthesis of thiazolidinone derivatives
A mixture of Schiff base (0.001mmol) and Thioglycolic acid (0.001mol) dissolved in 1,4-dioxane (20ml), anhydrous zinc chloride (0.5mg) was added and refluxed for 8 hours. The reaction was then cooled to 30°C and the resultant solid was washed with sodium bicarbonate solution. The final compound recrystallized from absolute ethanol.

Synthetic Scheme

Compound A1: N-[2-(4-hydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl-2-(naphthalene-2-yloxy)acetamide.
M.F- C_{21}H_{18}N_{2}O_{4}S, M.W 394.44, M.P 210°C, R_{f} 0.55, Yield 62.1%, IR (KBr) ν (cm⁻¹): 1624.11cm⁻¹ (Ar-C=C), 3177.12cm⁻¹ (aliph-N-H), 1026.57cm⁻¹ (N-N), 747.42cm⁻¹ (C=S), 3610.57cm⁻¹ (O-H phe), Mass (m/e value): 394.5(30%)(M⁺), 395.4(25%)(M+1), 377.1(50%), 301.0(70%), 274.0(38%), 228.1(58%), 200.7(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.

Compound A2: N-[2(4-chlorophenyl)-4-oxo-1,3-thiazolidin-3-yl-2-(naphthalene-2-yloxy)acetamide.
M.F- C_{21}H_{17}ClN_{2}O_{3}S, M.W 412.89, M.P 172°C, R_{f} 0.46, Yield 65.2%, IR (KBr) ν (cm⁻¹): 1611.20cm⁻¹ (Ar-C=C), 3186.99cm⁻¹ (Aliph-N-H), 695.56cm⁻¹ (N-N), 695.56cm⁻¹ (Ar-C-Cl), 1716.32cm⁻¹ (C=O-thiazolidine), Mass (m/e value): 412.9(24%)(M⁺), 413.8(20%)(M+1), 377.1(50%), 301.0(70%), 274.0(38%), 228.1(58%), 200.7(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.
Compound A3: N-[2-(4-fluorophenyl)-4-oxo-1,3-thiazolidin-3-yl]-2-(naphthalene)acacetamide. M.F. C_{21}H_{15}FNO_{2}S, MW- 396.43, M.P.-175°C, Rf- 0.48, Yield- 55.7%, IR (KBr) ν (cm⁻¹): 1609.09 cm⁻¹ (Ar-C=C), 3194.42 cm⁻¹ (Aliph-N-H), 1026.76 cm⁻¹ (N-N), 1256.34 cm⁻¹ (C=O), 705.10 cm⁻¹ (C-S), 1662.09 cm⁻¹ (C=O), 1000.62 cm⁻¹ (Ar-C-F), 1721.94 cm⁻¹ (C=O-thiazolidine), 1H-NMR δ (ppm): 8.20 (1H, NH-H), 6.8-7.9 (11H, Ar-H), 6.0 (1H, -N-CH-S-), 4.90 (2H, -O-CH₂-CO₃), 3.5 (2H, -S-CH₂-), Mass (m/e value): 396.5 (13%) (M⁺), 397.4(11%) (M+1), 377.1(50%), 301.07(50%), 274.038(58%), 228.1(58%), 200.76(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.

Compound A4: N-[2-(4-bromophenyl)-4-oxo-1,3-thiazolidin-3-yl]-2-(naphthalene-2-yloxy)acetamide. M.F. C_{21}H_{12}BrNOS, MW- 457.34, M.P.- 178°C, Rf- 0.51, Yield- 64.96%, IR (KBr) ν (cm⁻¹): 1621.73 cm⁻¹ (Ar=C=C), 3198.97 cm⁻¹ (Aliph-N-H), 1031.38 cm⁻¹ (N-N), 758.36 cm⁻¹ (C=O), 1681.77 cm⁻¹ (C=O), 1530.18 cm⁻¹ (Ar=Br), 1721.46 cm⁻¹ (C=O-thiazolidine), 1H-NMR δ (ppm): 8.0(1H, NH-H), 6.8-7.9(11H, Ar-H), 5.9(1H, N-CH-S), 5.2(2H, -O-CH₂-CO₃), & 3.3(2H, -S-CH₂-), Mass (m/e value): 457.4(10%) (M⁺), 458.39(9%) (M+1), 377.1(50%), 301.07(50%), 274.038(58%), 228.1(58%), 200.76(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.

Compound A5: 2-(naphthalene-2-yloxy)-N-[2-(4-nitrophenyl)-4-oxo-1,3-thiazolidin-3-yl]-acetamide. M.F. C_{21}H_{11}NO_{4}S, MW- 423.44, M.P.- 160°C, Rf- 0.71, Yield- 68.2%, IR (KBr) ν (cm⁻¹): 1605.5cm⁻¹ (Ar=C=C), 3181.81 cm⁻¹ (Aliph-N-H), 1050.57 cm⁻¹ (N-N), 1248.07 cm⁻¹ (C-N), 752.47 cm⁻¹ (C=O), 1685.27 cm⁻¹ (C=O), 1521.57 cm⁻¹ (C=O-thiazolidine), 1H-NMR δ (ppm): 8.2(1H, NH-H), 6.8-7.9(11H, Ar-H), 5.8(1H, N-CH-S), 5.1(2H, -O-CH₂-CO₃), & 3.4(2H, -S-CH₂-), Mass (m/e value): 423.5(11%) (M⁺), 424.4(9%) (M+1), 377.1(50%), 301.07(50%), 274.038(58%), 228.1(58%), 200.76(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.

Compound A6: 2-(naphthalene-2-yloxy)-N-[2-(4-nitrophenyl)-4-oxo-1,3-thiazolidin-3-yl]acetamide. M.F. C_{21}H_{11}NO_{4}S, MW- 423.44, M.P.- 165°C, Rf- 0.69, Yield- 68.2%, IR (KBr) ν (cm⁻¹): 1613.6cm⁻¹ (Ar=C=C), 3121.27 cm⁻¹ (Aliph-N-H), 1061.45 cm⁻¹ (N-N), 1248.01 cm⁻¹ (C-N), 774.86 cm⁻¹ (C=O), 1681.31 cm⁻¹ (C=O), 1516.23 cm⁻¹ (NO₂), 1717.68 cm⁻¹ (C=O-thiazolidine), 1H-NMR δ (ppm): 8.2(1H, NH-H), 6.8-7.9(11H, Ar-H), 5.8(1H, N-CH-S), 5.2(2H, -O-CH₂-CO₃), 3.4(2H, -S-CH₂-), Mass (m/e value): 423.5(9%) (M⁺), 424.4(8%) (M+1), 377.1(50%), 301.07(50%), 274.038(58%), 228.1(58%), 200.76(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.

Compound A7: N-[2-(3,4-dimethoxyphenyl)-4-oxo-thiazolidin-3-yl]-2-(naphthalene-2-yloxy)acetamide. M.F. C_{21}H_{11}NO_{4}S, MW- 438.12, M.P.-185°C, Rf-0.66, Yield-58.6%, IR (KBr) ν (cm⁻¹): 1619.0cm⁻¹ (Ar=C=C), 3202.17cm⁻¹ (Aliph-N-H), 1062.57cm⁻¹ (N-N), 1265.59cm⁻¹ (C-C), 747.42cm⁻¹ (C-S), 1663.99cm⁻¹ (C=O), 1126.82cm⁻¹ (C-O-C=O), 1723.15cm⁻¹ (C=O-thiazolidine), 1H-NMR δ (ppm): 8.2(1H, NH-H), 6.8-7.9(11H, Ar-H), 6.1(1H, -N-CH-S-), 5.3(2H, -O-CH₂-CO₃), 3.8(6H, -O-CH₃), 3.4(2H, -S-CH₂-), Mass (m/e value): 438.16(6%) (M⁺), 439.15(5%) (M+1), 377.15(50%), 301.07(50%), 274.038(58%), 228.1(58%), 200.76(67%), 185.1(24%), 157.1(48%), 127.1(73%), 102.0(44%), 100.4(100%)B.
Evaluation of Acute Oral Toxicity [8]

In the present study acute oral toxicity of the synthesized compounds were performed by acute toxic class method. No sign of toxicity and mortality were observed at 2000 mg/kg b. w. to the group of animals, the LD50 value of the title compounds (A1-A10) expected to exceed 2000 mg/kg b. w. and represented as class 5 (2000 mg/kg < LD50 < 2500 mg/kg) From the toxicity studies the data revealed that all the synthesized compounds proved to be non toxic at tested dose levels and well tolerated by the experimental animals as there LD50cut of values > 2000 mg/kg b. w.

Evaluation of anticonvulsant Activity [9-10]

Animals used: Albino wistar rats (150-200g) were used for the study. The animals were maintained in a well-ventilated room with 12:12 hour light/dark cycle in polypropylene cages.

MES induced convulsions method [11]: Seizures are induced to all the groups by using an Electroconvulsiometer. Maximal electroshock seizures were elicited by a 60 Hz alternating current of 150 mA intensity for 0.2 sec. A drop of electrolyte solution (0.9% NaCl) with lignocaine was applied to the corneal electrodes prior to application to the rats. This increases the contact and reduces the incidence of fatalities. The synthesized compounds were administered for 14 days before induction of seizures. The duration of various phases of epilepsy were observed. The percentage protection was estimated by observing the number of animals showing abolition of Hind Limb Tonic Extension (HLTE) or extension not greater than 90°.

RESULT AND DISCUSSION

The duration of tonic hindleg extension in rats treated with vehicle was 12.21±0.03seconds. The synthetic derivatives at dose of 200 mg/kg protect animals from seizures and significantly (p<0.001) reduced the duration of tonic hindleg extension for 0.5±0.69, 1.2±0.36, 1.9±0.98, 2.5±0.36, 3.2±0.84 seconds(A9,A8,A2,A1&A10). Whereas, the standard drug phenytoin treated animals exhibits abolished tonic hindleg extension. Phenytoin treated animals have shown 100% protection against MES induced seizures whereas synthetic derivatives (A9,A8,A2,A1&A10) 200 mg/kg have shown 95.85%, 90.04%, 84.23%, 79.75% &73.44% protection respectively.

<table>
<thead>
<tr>
<th>Group</th>
<th>Design of treatment</th>
<th>Flexion</th>
<th>Extensor</th>
<th>Clonus</th>
<th>Stupor</th>
<th>Recovery</th>
<th>% protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Vehicle control</td>
<td>8.9±0.32</td>
<td>12.21±0.03</td>
<td>18.78±0.32</td>
<td>38.2±0.58</td>
<td>189.2</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>Phenytoin 25 mg/kg, i.p.</td>
<td>3.9±0.33</td>
<td>0</td>
<td>8.91±0.54</td>
<td>16.29±0.35</td>
<td>93.5</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>A1 (200 mg/kg)</td>
<td>5.3±0.24</td>
<td>2.5±0.36</td>
<td>10.8±0.89</td>
<td>20.41±0.36</td>
<td>113</td>
<td>79.75</td>
</tr>
<tr>
<td>IV</td>
<td>A2 (200 mg/kg)</td>
<td>4.9±0.56</td>
<td>1.9±0.98</td>
<td>9.9±0.78</td>
<td>19.32±0.58</td>
<td>103</td>
<td>84.23</td>
</tr>
<tr>
<td>V</td>
<td>A3 (200 mg/kg)</td>
<td>6.3±0.36</td>
<td>4.5±0.78</td>
<td>12.9±0.69</td>
<td>25.82±0.45</td>
<td>134</td>
<td>62.65</td>
</tr>
<tr>
<td>VI</td>
<td>A4 (200 mg/kg)</td>
<td>7.8±0.25</td>
<td>9.8±0.45</td>
<td>16.7±0.25</td>
<td>35.9±0.32</td>
<td>162</td>
<td>18.66</td>
</tr>
<tr>
<td>VII</td>
<td>A5 (200 mg/kg)</td>
<td>7.2±0.36</td>
<td>7.3±0.58</td>
<td>15.8±0.69</td>
<td>35.4±0.98</td>
<td>153</td>
<td>40.29</td>
</tr>
<tr>
<td>VIII</td>
<td>A6 (200 mg/kg)</td>
<td>6.3±0.25</td>
<td>5.7±0.87</td>
<td>13.5±0.54</td>
<td>29.20±0.48</td>
<td>142</td>
<td>52.69</td>
</tr>
<tr>
<td>IX</td>
<td>A7 (200 mg/kg)</td>
<td>6.5±0.58</td>
<td>6.8±0.69</td>
<td>14.2±0.14</td>
<td>31.21±0.78</td>
<td>149</td>
<td>43.56</td>
</tr>
<tr>
<td>X</td>
<td>A8 (200 mg/kg)</td>
<td>4.4±0.69</td>
<td>1.2±0.35</td>
<td>9.5±0.12</td>
<td>17.92±0.65</td>
<td>98</td>
<td>90.04</td>
</tr>
<tr>
<td>XI</td>
<td>A9 (200 mg/kg)</td>
<td>4.01±0.25</td>
<td>0.5±0.69</td>
<td>9.1±0.87</td>
<td>16.89±0.78</td>
<td>95</td>
<td>95.85</td>
</tr>
<tr>
<td>XII</td>
<td>A10 (200 mg/kg)</td>
<td>5.7±0.35</td>
<td>3.2±0.84</td>
<td>12.2±0.58</td>
<td>23.4±0.45</td>
<td>125</td>
<td>73.44</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM of six observations; *p<0.05; ** p<0.01.Comparison between Group I Vs Group II, Group III &Group IV; Statistical significant test for comparison was done by ANOVA, followed by Dunnet’s ’t’ test.
CONCLUSION

From the present study it can be concluded that the test compounds A9, A8, A2, A1, A10 exhibit the highest anticonvulsant activity among the ten synthesized compounds. When compared with standard drug phenytoin (25 mg/kg i.p) it was found that the following synthesized compounds exhibited anticonvulsant activity in the order of A9 > A8 > A2 > A1 > A10 etc. The synthesized compounds shown the anticonvulsant activity in the order of the highest to the lowest because they contain various functional groups at different position in the aromatic ring like 3-NO2, 2-Cl, 4-Cl, 4-OH, 3-OH etc.

REFERENCES

7. Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G; Synthesis and anti-inflammatory activity of 1-acetylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones Il Farmaco, 2002; 57(2): 101-107.