Anti Solar Activity of Costus Speciosus Leaves of Sikkim Himalayas
Prasenjit Mitra¹, Tanaya Ghosh², Prasanta Kumar Mitra³*

¹Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan 342005, India
²Department of Medical Biotechnology, Sikkim Manipal University, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
³Professor & Head, Department of Medical Biotechnology, Sikkim Manipal University, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India

DOI: 10.36347/sajp.2020.v09i01.002 | Received: 05.01.2020 | Accepted: 12.01.2020 | Published: 16.01.2020

*Corresponding author: Prasanta Kumar Mitra

Abstract

Since long Costus speciosus (C. speciosus) has been used in different system of medicine for medical treatment. The plant has several pharmacological properties like anti inflammatory, anti oxidant, anti microbial, anti cancer, gastro protective, anti diabetic, anti gastric ulcer, hepato protective etc. But anti solar activity of C. speciosus leaves of Sikkim Himalaya is not known in literature. Aim of the present study was, therefore, to examine anti solar activity of C. speciosus leaves, if any and if so effect of extraction solvents on the activity. Leaves of C. speciosus were collected and identified by the taxonomist. Solvent extractions of the leaves were made separately by using ethanol, chloroform, methanol, acetone, benzene, and ethyl acetate. The extracts were separately exposed for absorption of UV ray to a spectrophotometer using UV region. Result showed that all extracts of C. speciosus leaves had UV absorption property but ethanol extract had maximum activity. Ethanol extract of C. speciosus leaves, therefore, may be further studied for isolation of the active compound responsible for UV absorbing property for its use in preparation of sun screen lotions.

Keywords: Costus speciosus leaves; Solvent extractions; UV absorbing property

Copyright @ 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

C. speciosus (family, Costaceae), found in tropical region of India along roadsides, streams and in wastelands, is an erect perennial herb [1]. Up to an altitude of 1200 m the plant is also found in moist tropical evergreen forests [2].

C. speciosus has different names. In Bengali and Hindi it is known as keu. The herb has several other names like Paskarmula (Gujarat), Tara (Assam), Channakova (Malayalam), Kostam (Tamil), Kashmiramu (Telegu), Kembuka (Sanskrit), Spiral flag (English) etc [3].

In traditional medicine C. speciosus is used as anthelminthic, expectorant purgative and stimulant. It is also used in the treatment of rheumatism, diarrhea, dysentery, dyspepsia, skin diseases, cough and cold, pneumonia, dropsy, fever, bronchial asthma, urinary diseases, jaundice, eye and ear infections as well as in snake bite cases [4].

C. speciosus contains many pytochemicals. These are dioscin, methyl protodioscin, β-sitosterol, methylprotogracillin, 5α-stigmas-9 (11)-en-3β-ol, α-tocopherolquinone, 26-diol and its 22-hydroxy derivatives, camphene, glucose, galactose, gracillin, dihydrophytylplastoquinone, protogracillin, protodioscin, dihydrophytylplastoquinone polyphenols, tannins, flavonoids, camphene, furostenol, ribose, 3-O-[α-L-rhapaphyranosyl(1→2)-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-22α-methoxy-(25R)furost-5-en-3β, 26-O-β-D-glucopyranosyl(25R)-furost-5-en-3β, diosgenin etc. 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranoside, 8-hydroxy triacantone-25-one, beta amyrine, methyl triaconatoe, α-tocopherolquinone, 24-hydroxytriacant-26-one, 24-hydroxytriacontan-27-one, 3-O-[β-D-glucopyranosyl(1→4)-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl-22α-methoxy (25R) furost-5-en-3β, β-amyrin, α-Humulene, 3-O-[α-L-rhamnopyranosyl(1→2)-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-22α-methoxy-(25R) furost-5-en-3β, diosgenin etc. were also isolated from different parts of C. speciosus [5, 6].

C. speciosus showed different pharmacological activities like anti diabetic, antipyretic, antifertility, anti bacterial, anti fungal, anti inflammatory, anti oxidant, anti cancer etc. The plant also possess anticholinesterase,
antihelminthic, hepatoprotective, hypolipidemic and adaptogenic activities [7, 8]. Anti solar activity of C. speciosus leaves, however, is not known in literature.

Aim of the present work, however, was to see in vitro anti solar activity of C. speciosus leaves of Sikkim Himalayas, if any and if so effect of extraction solvents on the said activity.

MATERIAL AND METHODS

Plant Material
Leaves of C. speciosus were collected from the local market during June – July and authenticated by the taxonomist of the department of Botany of the University of North Bengal, Siliguri. A voucher specimen (No.SM-MB-011) was kept in the department of Medical Biotechnology, Sikkim Manipal Institute of Medical Sciences of Sikkim Manipal University, Gangtok, Sikkim, India for future reference.

Test Drug
Leaves of C. speciosus were washed thoroughly under tap followed by distilled water. Leaves were then shed dried and powdered. The powder, used as test drug, was stored desiccated at 4 °C until further use.

Solvent Extraction
Test drug (100g) was extracted separately with 500 ml of ethanol, methanol, acetone, chloroform, benzene and petroleum ether in soxhlet at 37°C for 15 minutes. The extract was filtered and the filtrate was evaporated to dryness in vacuo with rotary evaporator at 40 – 50 °C. This was applied separately for all extracts. Brown masses obtained.

Anti solar activity
10 mg of this mass was dissolved in 100 ml distilled water. The solution was processed in a spectrophotometer for UV ray absorption at the range of 200-400 nm.

Chemicals
Chemicals required for the study were purchased from Loba Chem. Lab, Himedia Lab, India and from Merck, Germany.

STATISTICAL ANALYSIS
All experiments were conducted for three times. Data were analyzed statistically by SPSS 20. The statistical significance between UV absorption spectra of different extracts was evaluated with Duncan’s multiple range test (DMRT). 5% were considered to be statistically significant [9].

RESULTS
UV absorption spectra of ethanol, methanol, acetone, chloroform, benzene and petroleum ether extracts of C. speciosus Leaves are shown in Figures – 2, 3, 4, 5, 6 and 7 respectively.

Ethanol extract of C. speciosus leaves absorbs maximum UV ray at 200 nm (1.50). UV ray absorptions by the same extract at 250 nm, 300 nm, 350 nm and 400 nm were 0.97, 0.69, 0.58 and 0.49 respectively. At 200 nm wave length methanol extract absorbs maximum UV rays (1.40). At 250 nm, 300 nm, 350 nm and 400 nm wave lengths ethanol extract of C. speciosus leaves showed absorptions 0.79, 0.60, 0.51 and 0.40 respectively.

Acetone extract of C. speciosus leaves showed maximum UV absorption at 200 nm (1.25). UV ray absorptions by the same extract at 250 nm, 300 nm, 350 nm and 400 nm were 0.68, 0.54, 0.47 and 0.36 respectively. At 200 nm chloroform extract absorbs maximum UV rays (1.0). At 250 nm, 300 nm, 350 nm and 400 nm wave lengths acetone extract of C. speciosus leaves however showed 0.6, 0.43, 0.38 and 0.30 absorptions respectively. Benzene extract showed maximum UV absorption at 200 nm (0.90). UV ray absorptions by the same extract at 250 nm, 300 nm, 350 nm and 400 nm were 0.48, 0.35, 0.30 and 0.21 respectively. Petroleum ether extract showed maximum UV absorption at 200 nm (0.60). UV ray absorptions by the same extract at 250 nm, 300 nm, 350 nm and 400 nm were 0.35, 0.27, 0.24 and 0.18 respectively.
DISCUSSION

In electromagnetic spectrum ultraviolet radiation and non-ionizing radiation fall under 180 – 400 nm wavelength region. Ultraviolet radiation may be germicidal, erythermal and black light depending on absorption at wave length 180-280 nm, 281-314 nm and 315-400 nm respectively. Sunlight is the common source of UV radiation. UV radiation also comes from laboratory equipment like germicidal lamps, cross linker, lasers, Tran’s illuminators, and biological safety cabinet [10].

Vitamin D, a nutrient, is very much needed for human health. By absorbing calcium from food and supplements vitamin D helps to maintain strong bones. Cutaneous synthesis of vitamin D depends on solar UV-radiation. This covers almost 90% of the vitamin D requirement of human body. In this way solar UV radiation is good for humans. But solar UV-radiation has bad effect too. It can cause eye and skin injury, stimulate genetically determined photo sensitivities and photosensitivity reactions to ingested drugs. Skin is severely affected if there is over exposure of UV rays. Pigmentary changes atrophy, wrinkling and malignancy may occur. Basal cell carcinoma or malignant melanoma and skin cancer like squamous cell carcinoma may develop. UV radiation also affects eye. Cornea, the outer protective coating of the eye, may be affected. Painful inflammation of eye is seen and if the eye gets chronic UV exposure, then it lead to formation of cataracts. Over-exposure to UV radiation also changes distribution and function of white blood cells in human body. This may cause harmful suppressing effect on the immune system [11].
To save humans from ill effect of UV radiation there is continuous search for the sources which can absorb UV radiation from the environment thereby protecting humans. Plants were taken as source and it was found out that many medicinal plants can absorb ultra violet radiation.

Few such medicinal plants are, *Acanthopanax senticosus*, *Acanthus spinosus*, *Aloe vera*, *Carica papaya*, *Citrullus lanatus*, *Eclipta prostrata*, *Immature fruits of Phaseolus vulgaris*, *Mentha piperita*, *Ocimum sanctum*, *Perilla frutescens*, *Platonia Insignis*, *Phyllanthus amarus*, *Phyllanthus niruri*, *Phyllanthus ussuriensis*, *Phyllotachys pubescens* etc [12, 13].

Anti solar activity of *C. speciosus* leaves is not reported in literature. In present study we have shown that *C. speciosus* leaves of Sikkim Himalayas exert anti solar activity. All solvent extracts of *C. speciosus* leaves can absorb ultraviolet radiation. Maximum absorption was found at 200 nm. Further, ethanol extract of the leaves had maximum absorption in all the wave lengths of UV region (Figure-8).

It is known that biological activity of medicinal plants varies with extraction time and temperature [14-17]. We are now interested to see the effect of time and temperature on extraction process to get maximum ultraviolet radiation absorption by *C. speciosus* leaves. Work is going now in our laboratory in this direction.

CONCLUSION

In the present study we found UV radiation absorption property of *C. speciosus* leaves of Sikkim Himalayas. The property may be utilized in preparation of sun screen lotions to protect humans from UV radiation.

ACKNOWLEDGEMENTS

We gratefully acknowledge the cooperation of taxonomists of the department of Botany, University of North Bengal, Siliguri, Dist. Darjeeling, and West Bengal for identification of *C. speciosus* leaves.

Conflict of interest: Nil

REFERENCES

1. Gupta AK, Tondon N, Sharma M. Quality Standards of Indian Medicinal Plants, Medicinal Plants Unit, Published by Indian Council of Medical Research. 2008; 7:48.