Prostate MRI Parameters - A Systemic Review

Dr. Awadesh Tiwari¹, Dr. Parama Shivami²*, Dr. Ramya Ganesh³

¹Department of Radiology, Associate Professor, Lumbini Medical College Nepal
²Assistant professor, Govt. Medical College THENI, Tamil Nadu, India
³Senior lecturer, Department of Periodontia Malabar Dental College Mallapuram, Kerala, India

DOI: 10.36347/SJAMS.2019.v07i11.059 | Received: 20.11.2019 | Accepted: 27.11.2019 | Published: 30.11.2019

*Corresponding author: Dr. Awadesh Tiwari

Abstract

This systematic review includes all the articles from 2000 till 2019 with the aim to review the basic components of prostate MRI parameters and to list the sequences available in development to assist in implementation and image quality optimization prostate study. In the preliminary search around 26 papers were found out and 20 were included in this study. Functional techniques like DWI and DCE MRI plays crucial role in determining the stage of prostate cancer.

Keywords: Prostate cancer, MRI parameters, DWI, parameters.

INTRODUCTION

Prostate MRI has proven to be the most effective tool to diagnostic and management pathway in men at risk of prostate cancer [1, 2]. The Excellent Resolution and High signal to noise ratio achieved by MRI in combination with the functional measurements of water diffusion and contrast enhancements improves insight into the histopathology of the prostate [2].

MRI Prostate allows for risk stratification of men at risk for prostate cancer including its ability to predict cancer aggressiveness prior to biopsy [2].

AIM

To review the basic components of Prostate MRI Parameters. To list Sequences available and in development to assist in the implementation and image quality optimization Prostate MRI study.

METHODOLOGY

A detailed research was done from “Google search”, “Wiley”, “Pubmed” etc using keywords MRI parameters, prostate cancer etc. 26 articles were found, out of which 20 articles were selected for this systematic review.

Prostate MRI techniques

Under this topic, we will cover technical points such as equipment, patient preparation, basic and advanced parameters

Equipment specification

Prostate MRI can be obtained with a conventional 1.5 tesla or high field 3.0 magnets with or without an endo rectal coil [2].

3.0T magnet provides twice the SNR compared to 1.5T systems which provide improved spatial and temporal resolution and results in improved image quality [5, 6].

Endo rectal coil should be considered in older 1.5T systems for better results [8, 9]. Endo rectal coil is not required in 3T systems for lesion detection [10, 11].

The use of Endo rectal coil during image acquisition may not necessarily be enough to obtain ideal prostate MRI [15, 18]. In such cases, use of Liquid barium or perfluoro carbon instead of air for coil insufflation, since air can induce susceptibility artifacts on Diffusion weighted Image [15].

Use of ERC is more time consuming and costly since it requires on site physician and it causes discomfort to the patients during coil placement [15].

Patient preparation

Patients should be asked to empty their bowel during Prostate MRI examination [1, 2]. The reason is it may cause susceptibility artifact in the image due the presence of rectal gas especially during diffusion
weighted sequence. This is of paramount importance to achieve good image quality [5, 6].

Parameters

Prostate MRI is usually termed as Multi parametric MRI because it incorporates the combined use of anatomic and functional pulse sequences [9].

Anatomic pulse sequence includes T1 and T2 weighted MRI [10]. T1 weighted is not used for lesion detection but it is used to document biopsy related residual hemorrhage which can mimic prostate cancer [12]. T1 weighted should be acquired in axial plane using spin or gradient echo sequences. Its acquisition is inherent for dynamic contrast enhanced imaging [17].

T2 weighted is the workhouse of Prostate MRI because the anatomic details can be best delineated in this protocol mainly in axial plane [18]. T2 weighted should be acquired in all 3 planes using fast/turbo spin echo sequences.

Basic Parameters are

- Slice Thickness 3-4mm
- Field of View - 12-20cm covering entire prostate and seminal vesicle
- In Plane dimension <0.7mm Phase x <0.4mm Frequency

2. Functional pulse sequences includes diffusion weighted MRI (DW MRI) and Dynamic contrast enhanced MRI (DCE MRI)

DW MRI evaluates the Brownian water molecules within tissue, which is restricted in cancer-harboring tissues [15]. DW MRI has 2 key components, apparent diffusion coefficient (ADC) maps and High B Value DW MRI [18]. B Value is a factor related to the degree which an acquisition is diffusion weighted. 2 or more B values are needed to calculate ADC maps from DW MRI [17]. The ADC Map and High B value DW image are used in conjunction in a qualitative manner [16].

Technical specification of image acquisition for DW MRI jelle et al. 2012

- Echo time (TE) - <90 msec, Repetition time (TR) >3000 msec
- Slice thickness - <4mm without gap
- Field of View - 16-20cm covering entire prostate and seminal vesicle
• In plane dimension- <2.5mm (Phase and Frequency)

DCE MRI evaluates the vascularity of the prostate in order to identify permeability changes related to the tumor angiogenesis [6]. DCE MRI consists of T1 weighted images obtained before, during and after injection of gadolinium based contrast agent (GDCA) [8]. DCE MRI is the most invasive component of prostate MRI since it employs intravenous GBCA injection [9].

Technical specification of image acquisition for DCE MRI parkin et al. 2009
• Echo time (TE)- <100 msec, Repetition time (TR) >5 msec
• Slice thickness- 3mm without gap
• Field of View- 12-20cm covering entire prostate and seminal vesicle
• In plane dimension- <2mm (Phase and Frequency)
• Scanning time should be less than 2 minutes
• GBCA dose : 0.1 mmol/kg, Injection rate 2-3cc/sec

MR Spectroscopic imaging (MRS) is emerging as useful technique for evaluating the extent and aggressiveness of primary and recurrent Prostate cancer [2]. It is the only non-invasive method of studying chemical metabolites but is not clinically used to diagnose Prostate cancer and it’s still in research stage [2].

• Choline (Cho), Creatine (Cr), citrate (Cit) are the metabolites measured with proton spectroscopy in prostate
• Cho - Cell membrane components that is increased in high turnover states , Normal peak at 3.2 ppm
• Cit – biochemical molecule produced by normal prostate tissue. Normal peak at 2.6 ppm
• Cr is involved in energy metabolism. Normal peak at 3.0 ppm

MRS evaluation is mainly based on Choline peak elevation and Choline- Creatine ratios.

Normal Appearance of Spectroscopy

Technical specification of image acquisition for DCE MRI

Axial Probe 2d SI PRESS Sequence is used in MR Spectroscopy protocol
• Echo time (TE)- 144 msec, Repetition time (TR) 1000 msec
• Slice thickness- 10mm without gap
• NEX- 1.00
• Field of View- 12-20cm covering entire prostate and seminal vesicle
CONCLUSION

The results obtained by MRI Prostate represent a significant addition to traditional imaging techniques for the management of prostate cancer. Parameters used to obtain high resolution images plays a major role in diagnosing prostate cancer. Functional techniques like DWI and DCE MRI plays crucial role in determining the stage of prostate cancer.

REFERENCES