Prevalence and Bacteriological Profile of Carbapenem Resistant Gram-Negative Bacteria at a Tertiary Care Hospital, Navi Mumbai

Dr. Rahila Khan1, Dr. Shrikrishna A Joshi2* and Dr. Abhay Chowdhary1

1Department of Microbiology, Dr D Y Patil Medical College Nerul, Navi Mumbai-400706, India
2Associate Professor, Department of Microbiology, Dr D Y Patil Medical College Nerul, Navi Mumbai-400706, India

DOI: 10.36347/SJAMS.2019.v07i11.030

*Corresponding author: Dr. Shrikrishna A Joshi

INTRODUCTION

It is known that most of the clinically relevant bacteria are capable of acquiring and expressing resistance to antimicrobial agents commonly used to treat infections [1].

Antimicrobial resistance has emerged as a challenging threat in the healthcare sector with the micro-organisms developing newer mechanisms for resistance against the routinely used and the newer antibiotics available. The number of infections particularly those caused by the gram negative bacteria have been ever increasing with a large number of epidemics encountered [1].

Amongst the gram negative organisms, the Enterobacteriaceae inhabit a wide variety of niches, including the human gastro-intestinal tract and various environmental sites. They are currently the major cause of both, the community-acquired, healthcare-associated infections, including urinary tract infections, blood stream infections, respiratory tract infections etc [2].

Every clinically relevant species is capable of acquiring and using one or more mechanisms into developing antimicrobial resistance [3].

Clinicians generally use the Carbapenem group of antibiotics as a last resort in patients who do not respond to the beta-lactams, including the extended spectrum penicillins and the cepahalosporins. Carbapenems generally have an exceptionally broad spectrum of activity [4].

Copyright © 2019: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.
In the past decade, along with the production of Extended Spectrum Beta Lactamases (ESBL) and AmpC production, gram-negative bacilli including Pseudomonas, Acinetobacter and Enterobacteriaceae are now capable of developing Carbapenemase enzymes that confer resistance to the bacteria. Besides, the carbapenemases, the bacteria develop resistance by overexpression of efflux pumps, lack of porin channels present in bacterial cell membrane and inability to appropriately bind to the Penicillin Binding Proteins [5].

Due to the rapid increase in the prevalence and high mortality rates encountered with these Carbapenem Resistant Enterobacteriaceae (CR-En)， their early detection and restricted use is of utmost importance.

Hence, the present study was carried to determine the prevalence and the bacteriological profile of Carbapenem Resistant Gram-Negative bacteria in clinical isolates in our hospital.

MATERIAL AND METHODS

A prospective study was conducted at a tertiary care hospital in Navi Mumbai, India over a period of 6 months from January 2019 till June 2019.

A total number of 4040 specimens were collected from IPD patients for further investigations. The various clinical specimens included were urine, pus & wound swabs, sputum, endotracheal secretions, blood and other sterile body fluids.

All the Carbapenem resistant gram-negative bacteria were included in the study.

The samples were processed as per the standard protocol for isolation and identification of aerobic bacteria [6].

The antibiotic susceptibility testing was carried out for Ampicillin (10 µg), Amoxicillin-Clavulanic acid (20/10 µg), Piperacillin-Tazobactam (100/10 µg), Ceftriaxone (30 µg), Cefuroxime (30 µg), Ceftazidime-Clavulanic acid (30/10 µg), Cefpirome (30 µg), Imipenem (10 µg), Amikacin (30 µg), Gentamicin (10 µg), Ciprofloxacin (5 µg), Norfloxacin(U) (10 µg), Trimethoprim-Sulfamethoxazole (1.25/23.75 µg), Nitrofurantoin(U)(300 µg).

Colistin susceptibility testing is outsourced to an external laboratory.

For quality control, ATCC Strain of Escherichia coli 25922, Staphylococcus aureus 29213 and Pseudomonas aeruginosa 27853 were used.

Zone diameter of <19 mm for Imipenem disc was considered as resistant to carbapenem antimicrobials. (CLSI-2019).

RESULTS

A total number of 4040 samples were processed in the present study.

A total of 1560 samples showed growth and out of which 1114 strains of gram-negative bacteria were isolated (71.41%). From these specimens, various strains of Enterobacteriaceae family, Pseudomonas aeruginosa, Acinetobacter spp., & other non-fermenter gram-negative bacilli were isolated. Out of 1114 isolates of gram-negative bacilli, 323 were CRE. The overall CRE prevalence in our study was 28.99%. The most commonly isolated organism was Klebsiella pneumoniae (38%) followed by Escherichia coli (21%) (Fig 1).

116 samples were from urine, 61 samples were from pus & wound swabs, 26 samples were from sputum, 26 samples were from blood, 17 samples were from E.T. secretions and 7 samples were from other body fluids (Fig 2).

Overall, the most frequent source of bacterial isolation was urine (36%) followed by pus & wound swab specimens (19%).
Fig-3: Age wise distribution of the CR GNB isolates

Maximum CRE strains were isolated from ICU (43.46%) followed by 19.51% from Medicine ward (Table-1).

Table-1: CR-GNB Distribution in different wards

<table>
<thead>
<tr>
<th>CR-GNB Distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive Care Unit</td>
<td>43.56%</td>
</tr>
<tr>
<td>Medicine ward</td>
<td>19.51%</td>
</tr>
<tr>
<td>Surgery Ward</td>
<td>15.04%</td>
</tr>
<tr>
<td>OBGY Ward</td>
<td>9.75%</td>
</tr>
<tr>
<td>Orthopaedics ward</td>
<td>8.94%</td>
</tr>
<tr>
<td>Paediatrics ward</td>
<td>7.31%</td>
</tr>
</tbody>
</table>

Table-2: Shows Sex Wise Distribution of CR-GNB isolates

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>62%</td>
</tr>
<tr>
<td>Females</td>
<td>38%</td>
</tr>
</tbody>
</table>

DISCUSSION

Increase in the rate of resistance to carbapenem antibiotics among gram-negative isolates is a worldwide concern, especially in developing countries [2].

In this study, high rates of CRE (29%) were observed. Rapid increase of CR-GBN has been reported in India as well as globally [2].

Similarly, a high prevalence of CRE (36.4%) was observed by Taneja et al. [7]. Naveeneeth et al. [20] reported 12% prevalence of CRE in their study P. Gladstone et al. reported a prevalence of 12.2% CRE in their study in Vellore [8].

In the year 2010, resistance to carbapenems was reported in 10%–66% of gram-negative isolates in Saudi Arabia [9].

In this study, Urine was the leading specimen showing highest CRE isolates. Similarly, in studies by Satyajeet Pawar et al. [2] from Karad (31.76%), Nair et al. [10] from Mumbai (42%) and Singh et al. [11], urine was found to be the major contributor of CRE infections.

In the critical care patients, various invasive procedures and the duration of hospital stay contribute to be the high risk factors for the CRE infections.

The most commonly isolated organism in this study was *Klebsiella pneumoniae* (38%) followed by *E.coli* (21%) from the CR-GNB isolates. Similarly, in a study by Shio Shin et al in Taiwan, *K. pneumonia* was most commonly isolated organism. (29.4 %) [12].

Ejaz et al. also reported *K. pneumonia* as the most commonly isolated organism in their study (13.03 %) [13]. Jin Suk Kang et al., have reported *K. pneumonia* to be the most common isolate (72.7%) [14].

Similar findings were observed in studies by Satyajeet Pawar et al., *K. pneumonia* (68%) was the leading isolated followed by *E. coli* (19%) (2). Lorenzoni et al., found 95.7% of strains of CRE to be *Klebsiella pneumonia* [15].

Similarly, in a study by Chatterjee et al in north India, *K. pneumonia* was the most commonly isolated followed by *E.coli.* (66 %) [16].

Amongst the Gram Negative Bacilli, the *Enterobacteriaciae* form a major part of the normal gut flora and the increase in the incidence of CR-GNB is being observed due to the increase in the horizontal transmission of plasmid borne genes that are responsible for carbapenemase production [1].

CONCLUSION

This study showed a significantly high rate of Carbapenem Resistance among *Gram Negative Bacteria* isolated from the hospitalized patients which is in accordance with other studies conducted in different parts of India and globally. This alarms us towards a restricted use of Carbapenems to prevent further increase in the Carbapenem resistance.

Early detection, isolation and contact prevention of CR-GNB patients play an important role in preventing and rapid dissemination of such Infections.

Also, the detection of CR-GNB as colonizers of the hospitalized patients will play an important role in prevention of CRE infections.

REFERENCES

